

COLONEL SIR G P LENOX-CONYNGHAM, KT, R.E. FRS
SUPERINTENDENT OF THE TRTGONOMETRICAL SURVEY 1912-21

Colonel Sir G. P. Lenox-Conyngham, Kt., r.e., f.r.s., m.a.

Colonel Sir Gerald Ponsonby Lenox-Conyngham, whose portrait faces this page, joined the Survey of India in 1889 and most of his service was spent in the Trigonometrical-now called the GeodeticBranch.

During the years $1894-96$ he was associated with Captain S. G. Burrard in a determination of the fundamental longitude for India by means of several electro-telegraphic arcs extending from Greenwich to Karāchi, where connection was made with the longitude-are system of India. Originally Indian longitudes depended on the value found for Madras by purely astronomical means. In 1877 a somerwhat imperfect electro-telegraphic connection with Eurcpe had been made via Suez, Aden and Bombay: Burrard and Conyngham's results were very superior and their determination is closely supported by observations made in 1926 by means of wireless telegraphy. It has been used for Survey of India maps since 1900.

For eleven years Captain Lenox-Conyngham was in charge of the Latitude Party and observed by the Talcott method at numerous stations over India. He also observed for latitude and azimuth at a group of stations round Kalianpur, the origin of the Indian Survey, to determine the local anomalies of deflection.

In 1902 Captain Lenox-Conyngham published Professional Paper 6 in which are described certain experimental base line measures made by the then new Jiderin method of hanging wires. For this work special arrangements had to be made for determining the coefficients of expansion with temperature.

About this time it was decided to make a gravimetric survey of India. Between 1864 aud 1871 a small number of gravity stations on the Great Are had been occupied with the object of determining the ellipticity of the earth. Unfortunately the results were vitiated by neglect to correct the observations for flexure of the pendulum standa source of error not recognised at the time. Major Lenox-Conyngham took part in the acquisition and standardisation in Europe of the new pendulum apparatus by von Sterneck which had been selected. He brought the apparatus out to India and formed the Pendulum Party.

Trouble was experienced in determining the temperature of the pendulums, and Major Lenox-Conyngham overcame this by the introduction of a dummy pendulum, similar to the swinging pendulum, in the stem of which was placed a thermometer. He toured India for four years with the new apparatus and published the results of his work in Professional Paper 10 in 190 S .

He went to Calcutta as Superintendent of Map Publication, after which he was placed in charge of the Levelling Party for two years.

In 1912 he succeeded Mr. Eccles as Superintendent of the Trigono. metrical Survey holding the post until his retirement in August 1921, except for a short period during which he officiated as Surveyor General, In 1918 he visited Mesopotamia to advise on levelling in that country.

He was elected a Fellow of the Royal Society in 1918 and received the honour of Knighthood in 1919. On retirement he was appointed Reader in Geodesy at Cambridge and elected a fellow of Trinity College. The honorary degree of m.a. was conferred on him shortly aftermards by Cambridge University.

GEODETIC REPORT

VOL. I

From 1st October 1922

To 30th September 1925

PDBLISHED BY ORDER OF
COLONEL COMMANDANT' E. A. 'TANDY, R.E. SURVEYOR GENERAI. OF INDIA

PRINTED AT TIE GEODFTIC RHANCH OFFICE SURVEY OF INDIA, DKHKA DUN, 1 H28

CONTENTS

Page.
Colonel Sill G. P. Lenox-Conyngham, Kt., r.e., f.r.s., m.a. i, ii
Chapter I
Introduction and Summary
Para.

1. Geodetic Reports 1
2. Amalgamation of Computing and Tidal parties. Tidal prediction 1
3. Reduction of magnetic work 1
4. Discontinuance of solar photography l
b. International Union of Geodesy and Geuphysics, Rome, 1922 1
5. New tidal prediction methods, time service, standardisation of Indian magnetometers 2
6. International Union of Astronomy, Cambridge, 1925 2
7. Tidal observatories 2
8. Longitude observatory 2
9. Routine work 2
10. Research items 2, 3
11. Resumption of latitude observations 3
12. Prismatic astrolabe 3
13. Pendulum observations in a tent 3, 4
14. Resection used to fix astrolabe latitude stations 4
15. Standardisation of von Sterneck pendulums 4
16. Bench mark maintenance policy 4
17. Indo-Burmese connection 4
18. History of Indian high precision levelling 4
19. Progress with the new level net 5
20. 'Tertiary levelling 5
21. Training 5
22. Personnel of the Geodetic Branch 6, 7
Chapter II
Computing and Tidal Party
(i) Computing Section
23. Astronomical computations 8
24. The form of the geoid in India etc. 8, 9
25. Elevation of mean sea level above the geoid, in general, nil 9
26. Professional forms and tables 12
Рага. Page.
27. Special map projections 12
28. Various computations for extra-departmental purposes 12
29. Triangulation pamphlets 12, 13
30. Triangulation adjustment 13
31. Local triangulation (Dehra Dūn) 13, 14 13, 14
32. Magnetic declination 15
33. Height computation 15
34. Cantonment survey 15
35. Requisitions 16(ii) Tidal Section
36. Observatories 15
37. Tidal registration 15, 16
38. List of tidal stations 16, 17
39. Inspection of observatories 17, 18
40. Changes in tidal observatories 18
41. Basrah observations 18, 19
42. Harmonic analysis 19
43. Tidal predictions 21
44. Methods of prediction 21
4.6. Riverain ports prediction research 21, 22, 23, 24
45. Mean water level at Kidderpore 24
46. Comparison of actual with predicted value, Errors of prediction 25, 26
47. Additions to Tide Predicting Machine 26, 27, 28, 29, 30
48. Riverain tidal prediction 30
(iii) Observatory Section
49. Meteorological observations 68
50. Seismograph observations 68, 69
51. Solar photography 69
52. Cessation of solar photography 70, 71,72
53. Time observations 72
54. New Riefler Clock 72, 33
55. Impersonal micrometers 74
56. International longitude project 74
57. Hunter time observatory 74
Magnetic Observations
58. Magnetic operations during the field season 1922-23 74, 75
59. Magnetic work during the recess 1922-23 75
60. Dehra Dūn magnetic observatory 1922-23 75
61. Mean values of the declination and h.F. constants.. 75,76
Para. Page.
62. Mean base line values 76
63. Mean scale values and temperature range 77
64. Mean monthly values and annual changes 77
65. Toungoo magnetic observatory 1922-23 77
66. Mean values of the declination and h.F. constants 78
67. Mean base line values 78, 79
68. Mean scale values and temperature range 79
69. Mean monthly values and annual changes 79,80
70. Kodaikānal observatory 1922-23
71. Mean values of the declination and h.F. constants 80, 81
72. Mean base line values 82
73. Mean scale values and temperature range 82
74. Mean monthly values and annual changes 83
75. Mean values of magnetic elements in obser- vatories 1922 83
76. Dehra Dūn observatory, 1923-24 109
77. Mean values of the declination and н.е. constants 149
78. Mean base line values 110
79. Mean scale values and temperature range 111
80. Mean monthly values and annual changes 111
81. 'Toungoo observatory, 1923 112
82. Mean values of the declination and h.F. constants 112
83. Mean base line values 113
84. Mean scale values and temperature range 114
85. Mean monthly values and annual changes 114
86. Kodaikanal observatory, 1923 115
87. Mean values of the declination and u.f. constants 115
88. Mean base line values 116
89. Mean scale values and temperature range 117
90. Mean monthly values and annual changes 117
91. Mean values of magnetic elements at observatories in 1923 118
92. Dehra Dūn observatory 1924-25 144
93. H.F. magnetograph 144
94. Declination magnetograph 144
95. V.F. magnetograph 14.4
96. Observatory and electric tramway in Dehra Dün 144
97. Mean values of the declination and H.F. constants 145
98. Mean base line values 14.6
99. Mean scale values and temperature range 146
100. Mean monthly values and annual changes 147
101. Mean values of magnetic elements at Dehra Dūn, 1924 148

Chapter III
 Astronomical Latitudes

Para. Page.
104. Latitude operations, 1923-25 158
105. Selection of latitude stations 158
106. Stations in Bihār and Orissa and in the United provinces 158
107. Stations in Assam 158
108. Instruments used 158
109. Weather during Assam observations 159
110. Value of one division of level scale 159
111. Micrometer value, 1923-24 159
112. Micrometer value, 1924-25 159
113. Results of observations $1 \stackrel{1}{9}$
114. Hayford residuals 164
115. Representative sections 165
116. Comparison with sections 165
117. Summary 165, 166
Chapter IV
Gravity and Latitude
118. Pendulum stations in 1923-24. 167
119. Temperature control 167
120. Flexure measurements 168
121. Clock rates 169
122. Probable error of an observation 169
123. Times of vibration at Dehra Dūn 170
124. Values of g 171
125. Summary 171, 173
126. Quartz pendulums 173
127. Observations in England 173
128. Design and manufacture of new pendulums 173, 174
129. Modifications in design 174
130. Constants of the new pendulums 174, 175
131. Effect of temperature condition in Kashmīr observations 175, 176
132. A subbase and circuits 176
133. Transport and Health 176
134. Journey to the Deosai 177
135. The Deosai 177
13f. Return to Gandarbal and Dehra Dūn 177
137. Circuits 178
138. Flexure corrections $1924-1925$ 178, 179
139. Observations in tents 179
140. Height of stations 178
141. Clock rates by transit and astrolabe 180
Para.Page.
142. Variation from mean and Dehra Dūn values of individual pendulums 182, 183
143. Value $\left(s_{0}\right)$ of the pendulums at different stations 185
144. Values of g in 1914 and 1925 compared 185
145. Simultaneous latitude determination by astrolabe 189
146. Advantages and disadvantages of astrolabe 189
147. Star catalogue 189
148. Geodetic latitude by theodolite resection 189, 190
149. Corrections for topography and isostatic compen- sation 193
150. Average height map of India and forms 193
Chapter V
Levelling
1922-23
151. Season 1922-23 194
152. Field organization 194
1.53. Outturn of work 195
154. Summary 195
155. The new level net 195
156. Details of field work. Sutlej valley group 195
157. Rectangulation of areas to be developed 196
158. System of work 196
159. Instruments used 196
160. Outturn and probable error of tertiary single levelling 196, 197
161. Cost rates 197
162. Charts 197
163. Sutlej valley secondary levelling 197, 198
164. Outturn 198
165. Probable accidental error 198, 199
166. Instruments, weather and health 199
167. Secondary levelling 199
168. Outturn 199
169. The country levelled 200
170. Probable accidental error 200
171. Instruments used 201
172. Levelling in Bombay and Madras 201
173. Recess work and instruments used 201
174. Manmàd to Ahmadnagar, levelling of 1921-22 and of subsequent seasons 201,202
175. Levelling in Burma 202
176. Outturn and the country levelled 202
Para. Paga,
177. Probable accidentai error 208
178. Bench marks connected and their heights 203
179. Instruments used and health 203
180. Levelling in Sind and Punjab 204
181. Outturn 204
182. Probable accidental error 205
183. Instruments used and health 205
184. Publications 205
185. Preservation and Maintenance 205
1923-24
186. Season 1923-24 219
187. Field organization 219
188. Outturn 219
189. Summary
190. The new level net 220
191. Details of field work. Sutlej valley group, tertiary levelling 220
192. Cost rates 220, 221
193. Computation in field 221
194. Different sections and country, and the subrectangulation party 221,222
195. The charts 222 222
196. Burma secondary levelling 222, 223
197. Levelling on the new net of India 223, 224
198. Instruments 224
199. Net line, relevelment, probable accidental and systematic errors 224
200. Instruments, weather and health 224
201. Net work, Mārwar Pâli-Govardhanla 224, 225
202. Instruments and weather 225
203. Squads 225
204. Investigation with frequency of relevelling 225
205. Levelling policy 225, 226
206. History of Indian trigh precision levelling 226
207. Handbook of levelling and other publications 226
1924-25
208. Season 1924-25 243
209. Field organization 243
210. Ontturn 243, 244
211. Summary 244
212. The new level net 244, 245
213. Details of field work. Sutlej valley tertiary levelling 245
Para. Page.
214. Cost rates compared 245
215. Computation in the field 246
216. Condition of the country levelled 24.6
217. Recess work 246
218. Burma secondary levelling 24.7
219. Burma tertiary levelling 247, 248
220. Results of the levelling carried out, and closing errors 248
221. Calcutta Corporation Drainage secondary levelling 248, 249
222. East Indian Railway secondary levelling 249, 250
223. Levelling of the new net line 101 250
2.24. Instruments used 250
225. Fore levelling of line 101 A 250, 251
226. Instruments used 251
227. Back levelling of line 102 251
228. Instruments used 251
229. Probable accidental and systematic errors 251, 252
230. Line 121 252
231. Instruments used 252
232. Fore levelling of lines 121 A and 150 252
233. Fore levelling of line 151 252
234. Check levelling at Rangoon and Pegu 254
235. Triangulation stations 254
236. Kelevelments 254
237. Proposed sites of standard bench marks 255
238. New type of bench marks described 255,256
239. Publications 256
Chapter VI
Height of Mount Everest and other peaks
240. General 287
241. Old values of the height of Everest 287
242. Methods of determining height 287, 288
24.3. Barometric observations 288
$2+4 . S_{p i r i t}$ levelling 288
245. Vertical angles 288
246. The name Mount Everest 289
247. The observations of vertical angles to Everest 289
248. What is meant by the height of a mountain 290
249. Height above the spheroid 290
250. Refraction 291
25l. The observed phenomena of terrestrial refraction 291
252. Dimroal change 291
253. Reciprocal observations 292
254. Later developments 292, 293
Рага. Page.
255. Refraction considered theoretically 293, 294
25̄6. Thermal equilibrium of the atmosphere 204
257. Radiation 294
258. Conduction effect 295
259. Barometric height results 295, 296
260. Application to the case of refraction 296
261. The form of the sea level surface or geoid 296
262. Effect of plumb-line deflection in height determination 297
263. Results of the investigation 297
264. Probable error of the results 297
265. Reason for using geoidal heights 298
266. Previous great climbs 298, 299
List of Publications of the Survey of India 301-324
Charts and plates
Portrait Colonel Sir G. P. Lenox-Conyngham Kt., R.E., F.r.S., M.A.
Chart I. The geoid in India 9
Chart II. Tide prediction chart for Bombay $2 i$
Plate IIA. Hunter observatory 7
Chart III. Latitude stations 156
Chart IV. Telegraphic Longitude stations 158
Chart V. Triangulation series and Azimuth stations 158
Plate VI. Average section through Ramnagar and Sirwāra 165
Chart VII. Pendulum stations 167
Chart VIII. Gravity anomalies (Bouguer) 173
Chart IX. Gravity anomalies (Hayford) 178
Plate $\quad X$. Diagram showing the graphical solution of Resection at Tosh Maidan 190
Plate XI. Mountain masses in Kashmīr and neighbourhood, with free air gravity anomalies and plumb-line deflections 198
Plate XII. Kashmir. View from the summit of Tatakuti in the Pir Panjal 198
Plate XIII. Deosai plains looking S.E 193
Plate XIV. Deosai plains looking S.W 199
Chart XV. Lines of precise Levelling and Tidal stations 194
Chart XVI. Index chart of published triangulation pamphlets 324

Chapter I

INTRODUCTION AND SUMMARY

The present volume is the first of a new series of publications, styled the Geodetic Reports. Until 1921-22 geodetic work of the Survey of India was dealt with in the series of Record Volumes which contained also reports of topographical work and were published annually, there being occasional additional volumes. In this first volume a period of three seasons, 1922-25 is covered; but future volumes will contain an account of only one season's work.

The Geodetic Reports will describe the work of the Geodetic Branch of the Survey of India, excluding the work of the Drawing Office, Publication Office, etc., some account of which may be found in the Annual General Reports or Map Publication Reports.

On lst April 1923, No. 16 (Tidal Party) was amalgamated with the Computing Office, the combined party being designated the Computing and Tidal Party. During the previous few years the tidal observatories had been maintained, but harmonic analysis of the tidal diagrams had been discontinued where adequate values of the harmonic constants had been obtained. On the other hand tidal prediction, formerly done in England, was taken up and "Tide-Tables for Indian Ports" have been prepared in this party, commencing with those for 1923.

In 1923, on the score of economy, magnetic work, until then carried out by No. 18 Party, was much cut down and no field work has been done since then. Toungoo Observatory was closed on 22nd October 1923 and Kodaikānal Observatory on lst October 1923. Dehra Dūn Observatory has been maintained in operation by the Computing and Tidal Party ($\$ 61$). An account of the work is given in $\$ \S 60-10: 3$.

Solar Photography, inaugurated in 1878 in collaboration with Sir Norman Lockyer, was discontinued with effect from 30th June 1925. Between the dates mentioned, photographs of the sun had been taken daily, weather permitting; and prints and plates were despatched week by week to the Director, Science Museum, South Kensington, London (ride§54).

Dr. de (iraaff Hunter was nominated a British Empire delegate to the International Union of Geodesy and Geophysies at Rome, May 1922, and represented the Government of India. In addition he attended all the meetings of the Committee of Tidal Prediction. He was appointed Reporter to the Section of Geodesy on the "Deviation of the vertical tine" and also to serve on the International Committee of Longitudes, and on a solect committee with Captain Buchwaldt (Denmark, since deceased) to report on certain questions relating to the reduction of gravity results. His report (1912-1922) on the deviation of the vertical time was submitted during 1923 to the Secretary, Section of Geodesy; and a second report (1923-25) during 1925.

3.
 Reduction of
 magnetic work.

4.

Discontinuance of solar photography.

5.

International
Union of Geo-
desy and
Geophysics
Rome, 1922.

Now tidal pradiction mothods; time sarvice; standardisa. tion of Indian magnetometers.

While on leave in 1922 Dr. Hunter studied Dr. Doodson's methot: of tidal analysis, spending a month at the Tidal Institute, Liverpol Certain modifications in tidal prediction procedure are indicated belon (vide $\S \S 49,50$). He also visited Edinburgh Observatory and was shome the clock installation and time service arrangements by Profess: Sampson, f.r.s., Astronomer Royal for Scotland. Professor Sampon had very kindly undertaken a test on a new Riefler clock, No. 450, f: Dehra Dūn, which was completed shortly afterwards. The clock bu subsequently been received (15th Aug. 1923). Dr. Hunter also mad comparative observations with Indian Magnetometer No. 10, both a: Kew and at Val Joyeux (10 km . west of Versailles).

Dr. Hunter attended the meeting of the International Union
Intarnational Union of Astronomy, Cambridg 1925.
7. Astronomy at Cambridge in July 1925, in connection with the mixe Longitude Commission. He was also concerned in discussing ar: selecting suitable wireless reception and other equipment with a vies to the participation of the Survey of India at Dehra I) \bar{n} n in the Inte: national Longitude scheme, fixed for October and November 1926.

8 Tidal observatories.

Longitudg

A new tidal observatory was opened at Bassein in October 19: Those at Moulmein and Port Blair were closed in November 1924 at April 1925 respectively (riile $\S 41$).

A special observatory for time determination was designed and cors tructed (ville $\$ 59$). 'The instrumental side of this work has also be improved by the acquisition of a high grade clock, Riefler No. I: (vide § 56) and by the fitting of moving wire micrometer to the telesco: eyepieces (vide§ 57).

Progress has been made in the revision of professional forms an tables (vide $\$ 27$) and in the compilation and publication of triangi lation data (vide § 30).

Tidal observatories were inspected as shown in (§ 40). Compariso: of predicted and actual times and heights of high and low water at a tidal stations where observations were made have been tabulated on new form and in some cases corrections to future prediction are base on these (vide $\S 48$). Meteorological and Seismograph observatiot: have been continued as usual (ride $\$ \S 51,52$).

The results of all latitude, longitude and azimuth observations India have been employed to determine the form of the geoid. This t : be utilised for a redetermination of the Earth's Figure and for a geners consideration of the hypothesis of isostasy (vide $\S 25$). An inguiry ${ }^{\text {mp }}$ also made into the variation of the geoid with regard to the mean wale level of the ocean, with negative results. From certain observations ${ }^{\text {r }}$ the U.S.A. it had been suspected that such variation occurs. (rile $\$ 96$

A new method of graphical adjustment of triangulation las ber introduced (vide § 3l).

A considerable amount of work was done in attempting to improve the accuracy of tidal predictions at riverain ports. It often happens, as in the case of Kidderpore (Calcutta) that important ports are situated at a considerable distance up an estuary: and at such places tidal prediction is far more intricate and less precise. Some progress was made but not sufficient as yet to be practically useful (vide $\S \S 46,4.7$).

Mechanical additions have been made to the 'Tide Predicting Machine which assisted in the above inquiry and also facilitates the work of ordinary harmonic tidal prediction (vide § 49).

A lectire delivered in Madras in January 1922 at the meeting of the Indian Science Congress, entitled "The height of Mount Everesl and other peaks", is reproduced at the end of this volume (vide § 240).

Latitude observations by the Talcott method had been in abeyance since 1915 until 1921 when Major Mason observed at four stations in Kashmir. Observations were made next in season 1923-24 when No. 13 Party visited Bihar and Orissa. In the following season the party went to Assam. Values of plumb-line deflection at twenty-seven stations were obtained in the two seasons. Major Thompson's conclusion (vide $\$ \$ 116,117$; is that the results in these areas are not fully accounted for by the Hayford theory of isostasy. Further latitude results were obtained from the prismatic astrolabe observations made in Kashmir in conjunction with the pendulum work.

Two prismatic astrolabes-large and small models-were obtained in 1921. Observations with these instruments yield both time and latitude, and results of very high precision may be obtained with the larger (geodetic) model. Though some differences of opinion exist as to the degree of this precision, it was considered that there would be a distinet gain in using this instrument in conjunction with pendulum observations, for which clock rate has to be accurately determined. For rate, the question of personality does not arise and so the astrolabe should be suitable for pendulum observations. In addition, good values of lati-tude-also impersonal-are derived simultaneously ; so it was considered that if ge uletic positions of pendulum stations were adequately fixed, useful valnes of deflection in meridian would also be arrived at. The complete prioject of determining also the deflection in longitude, requiring in ad! lition the reception of wireless time signals, was deferred until a suitall, wireless set had been obtained.

Th: larger prismatic astrolabe was used in Kashmir in 1925 (vide § \$ $141,145,146$).

In the past it has been an invariable rule to observe pendulums in a room rather than a tent becanse the temperature variations are usually much less. To extend the work to Himalayan areas, very interesting from the point of view of isostasy, it was necessary to break away from this practice; for in such regions houses are not to be found. It was hoped that this would be rendered possible by the use of the quartz
11.
(Contd.)

12.

Resumption of latitude. obsarvations

13.

Prismatic astrolabe.
14.
14. pendulums which had been obtained just before the war, but had nefre been used (vide § 126). Accordingly in 1924. a beginning was madet standardise these two pendulums. Unhappily both were broken in tran: port between Mussoorie and Dehra 1)ūn While this was very muif regretted, it showed conclusively that these quartz pendulums werete fracile to withstand the rough transport conditions which are met wit: in the Himalayas. Captain Glennie went fully into the question temperature effects and evolved a working method of dealing with th: larger temperature changes unavoidable with observations in a tent: th: clearing the way for observations in any locality. The first trials wer made in the summer of 1925 when pendulums were swung in Kashm: ($\$ 139$). As the old von Sterneck pendulums were then in Europe fr standardisation, Captain Glennie also designed and supervised the con: truction of three brass pendulums (ride § 128) which were used wit success in the Punjab and Kashmirr. Time and also astronomic latitud: were derived from astrolabe observations.

Resection used to fix astrolabe latitude stations.
16.

Standardisátion of von Stgrneck pendulume.
17.

Banch mark maintenance policy.
18.

Indo-Burmese connection.
19.

History of Indian high precision levelling.

The sites of the pendulum stations did not coincide with poin! fixed by triangulation and so it was necessary to determine the geodeli position of each with fairly high precision, for deduction of the latitui deviation. This was done by theodolite resection from points fixed! triangulation. Captain E. A. Glennie and Lieut. G. H. Osmast carried out the astrolabe as well as the resection observations, and sat: factory and valuable results were thereby obtained. Positions probat correct to 5 feet were deduced in this way (vide § 148).

The four von Sterneck pendulums, used in India between 1907 at 1915, were taken to England in the spring of 1924 by Lt.-Colonel H. Mc Cowie for re-standardisation. Colonel Cowie was not in good health at th: time and so this work was somewhat delayed. However he made th necessary observations at Kew in June 1925 and some months laty he also swung the pendulums at Cambridge (vide §127). Colonel Con: was bringing these pendulums back to India in September 1925 an had reached Marseilles when he became seriously ill and died on boar: P.\& O. S.S. "Rāwalpindi" on 25 th September, 1925.

The levelling policy has been under consideration and the vien arrived at is that the Survey of India should fix and maintain bend marks at regular intervals: while intermediate bench marks, whow: height has been determined with the same precision would pass into th: custody of local authorities to maintain as they find convenient.

The lines of levelling in India and Burma are as yet uncounected but some steps have been taken towards a reconnaissance of a rouls whereby the connection might be effected (ride §206).

A report was submitted to the International Union of Geodest Geophysics 1924 giving a brief history of Indian levelling of higi precision since its introduction just before the war (ride § 206).

The new level net was begun in 1914. Since then 3638 miles of levelling have been completed in both directions and 949 miles in one direction only.

20

Progress with
the new level net.
Eight new lines have been added to the original net.
A new departure has been made since 1922 in the carrying out of levelling for engineering projects with no other scientific object. For in some cases a lower order of precision is adequate, which can be conveniently covered by the designation tertiary levelling. Details will be found in § 156.

Lieut. J. B. P. Angwin r.e. and Lieut. D. R. Crone r.e. were under instruction from 28 th October and 22 nd October 1924 respectively until 10th September 1925 and 22 nd May 1925 respectively.

Mr. H.B. Simons held charge of the Training School from lst January to l4th April 1924 and Mr. S. F. Norman from 15th April 1924 to 30 th September 1925. Four probationers of class II and fourteen probationers of upper subordinate service passed through the School.
21.

Tertiary levalling.
22.

Training.

PERSONNEL* OF THE GEODETIC BRANCH, 1922-25

23.

Personnel of the Geodetic Branch.

Director, Geodetic Branch \dagger
Lit.-Colonel H. McC. Cowie, r.f., from 1st Oot. 1922 to 30th March 1924. Dr. J. de Graaff Hunter, M.a., Sc. D., F. Inst. P., from 31st March to 27 th 4 pril $94^{\prime \prime}$
Lt.-Colonel R. H. Thomas, i.s.o., r.e., from $28 t h$ April 1924 to 20th September $18: /$

COMPOTING AND TIDAL PAR'IY

Class 1 Officers.
Dr. J. de Granff Hanter. M.A, Sc.D., F. Inst. P., in charge from 27th Noveraber 1922 to 20th March $19 \% 5$.
Major C.M. Thompson, I.A., in charge from Ist October 1922 to 26th November 1922 and from 21st March 1925 to 30th September 1925.

Class II Officers.

Mr. D.H. Laxa, Tidal Assistant from 1st October 19:2 to 23rd March 1925.
Mr. R.B. Mathar, i.A., Tidal Assistant from 24th March 1925 to 30th September 1925.

Upper Subordinate Service.
Mr. K.K. Des, b.A., from 1st May 1924 to 30th September 1925.

Competing Section.

Mr. Makundananda Acharya, Head Compater and 11 Geodetic compaters.

Tidal Section.
16 compaters in 1922-23.
10 compaters from 1923-24.
Magnetic Observatory.
Mr. K.N. Mnkerjee, m.A. Magnetic Observer \& 1 compater.

13 PARTY (ASTRONOMICAL)
Class I Officers.
Captain H.E. Roome, M.C., R.E., in charge from 1st October 1922 to 30th Septem. ber 1923.
Major C.M. Thompson, r.A., from 1st October 1923 to 31st March 1925.
Captain G.II. Osmaston, M.C., R.R., in charge from 1st April 1925 to 30th September 1925.

14 PARTY (PENDULOMS)

Class I Officers.
Major W.E. Perry, m.C., r.t., in cherge from lat October 1922 np to 14th October 1923.

Major H.J. Conchman, d.s.o., M.c., R.k. charge from 15th to 22nd Ootober 142 m
Captain E A. Glennie, d.s.o., R.E., in chart from 23rd October 1923 to 30th Seplet? ber 1925.

Class 11 Officers.
Mr. R.B. Mathur, D.A., 1923-25.
Lower Subordinate Service,
3 Compaters.
15 PARTY (TLIANGULATION)
Class I Officer:.
Capt. E.A. Glenoie. D.s.o., n.e.. from October to 23rd October 1922.
Major H.T. Morshead, D.s.o., r.в., for 24th October 1922 to 18th February 14
Major C.M. Thompeon, I.A.. from Febraary to 7th October 1923.
Mr. Hanuman Prasad, Rai Sahib, in chat from 8th October 1923 to 16th Jolyl
Major W.E. Perry, m.c., r.e., in charget 17th July to 14th Aggust 1924.
Captain O. Slater, M.C.. R.B., in chargets 15th Augast 1924 to 31st October 1
Captain W.J. Norman, M.C., R.e., in chy from 1st November to 7th December!
Captain O. Slater, M.C., R.f.. from 8th [cember 1924 to 30 th September 1922

Class II Officers.
Mr. G.J.S. Rae, up to November 1 © 24.
Lower Subordinate Service.
6 compoters in 1922-24.
4 , ,, 1924-25.
16 PARTY (TIDAL)
Class 1 Officers.
Dr. J. de Graaff Hunter, m.A., S'c.D F. Inet. P., in charge from 19th Foth ary to 31et March 1923.
Major C.M. Thompson, r.A., in chargets 27th November 1922 to 18 th Felrit 1923.

Rei Sahib Hannman Prasad, in cbr: from 1st October 1922 to 261 N Noref: 1922.

[^0]
Class II Officers.

Mr. D.H. Luxa.
Lower Subordinate Serrice.
16 Oomputers etc.

17 PARTY (LEVELLING)
 Class I Officers.

Major A. H. Gwyn, I,A., in charge from 19th March 1923 to 30th Sept. 1925.
Bt.-Major K. Mason, M.C.. R.E., in cbarge from 1st October 1922 to 18th March 1923.

Captain F. A. Glennie, D.s.o., R.E., from 24th October 1922 to 18th April 1923.

Class II Officers.

M. G. J. S. Rae, 1922-23.
, O. N. Pushong, 1922-24.
" R. B. Mathirr, B. s., 1922:23.
" K.S. Gopalachari, B.A., 1922-24.
N. N. Chakerbutty, L.C.E. 1922.23.

Jiya Lal Salgal, 1923-25.
N. R. Maznmidar, 1923-25
D. N. Banerjee 1923-25

Upper Subordinato Service.
Mr. K. K. Das, B.a., from lst Oct. 1922 to 30th April 1924.
" S. C. Muk erjee, 1922-25.
" P. B. Roy, 1922-25.
" A. A.S. Matlub Ahmad, 1922-25.
" Abdul Majid, 1022-25.

- II. C. Banerjen, 1923-25.
H. K. Kar, 192 - 25.

Lower Subordinate Service.
22 Compnters in 1022-24.
25 Compoters in 1924-25.
11 Purely tenporary levellers 1922-23.
fi4 , , \quad, 1923-24.
77 .. $, \quad, \quad 1924-25$.
18 IAI'IY (MAGNETIC)
Class I Officers.
Mr. E.C.J. Bonll, Y.D.. in charge from lel Octoher 1922 to 30th September 1923.

> Class II Officers.

Mr. N. R. Mazamular.
" Jiga Lal Sahpal.

> Upper Subordinate Seroice.

Mr. B. B. Shome.
H. С. Banerjea, B. A.

Lower Subordinate Service.
1 Magnetic Observer. 10 Compaters etc.

19 PAR'TY (BASK)
 Class I Officars.

Major A.H. Gwyn, I.A., from 27th October 1922 to 20th April 1923.
Lt.-Colonel A. A. McHnrg, D.s.o., r.E., from 21st to 30th April 1923.
Capt. H.E. Roome, M.c., R.E., in charge from 1st to 21st October 1923.
Lt.-Colonel H. McC. Ccwie, r.E., in charge from 1st October 1922 to 26th October 1922, let May 1923 to 30th September 1923 and 22 nd October 1923 to 30th March 1924.
Dr. J. deGraaff Uonter, M.A., Sc.D. F.Inst.I', in charge from 3lst March to 11th April 1924.

Captain O. Slater, m.C. R.E., in charge from 12th April 1924 to 7th December 1924.
Captain W.J. Norman, M.C., R.E., in charge from 8th December 1924 to 10th Septem. ber 1925.
Lieut. J.B.P. Angwin, R.E., in oliarge from 11th September to 30th September 1925.

TRAINING

Class I Officers under instruction.
Lieul. J.B.P. Angwin, Re., from 28 th Oct. 1924 to 10 h September 1925.
Lient. D.R. Crone, R.E , from 22nd Oct. 1924 to 22nd May 1925.

TRAINING SCHOOL
Mr. M.B. Simone Instructor from 1st January 1924 to 144 h A pril 1924. , S. F. Norman Instructor from 15th April to 30th Sept. 1925.

J. de Graafy Hunter, Offg. Divector of the Geodetic Branch.

Chapter II

COMPUTING AND TIDAL-PARTY

by J. de Graaff Hunter, m.a., Se.D., F. Inst. P.

There are three sections of the Computing and Tidal Party :-
(i) Computing Section.
(ii) Tidal Section.
(iii) Observatory Section.

(i) Computing Section

24. Astronomical computations

The reduction of the Talcott observations for latitude made in 1922 by Major K. Mason r.e., at Gogipatri, Poshkar, Zebanwan and Reban in Kashmir was completed. Observations made in 1860 at Poshkar and Gogipatri had yielded results which were open to doubt: but the 1929 observations gave results almost identical. The deduced latitudes uncorrected for motion of pole are :-

Times of sunrise and sunset for Calcutta were computed for inclusion in Tide-Tables of 1925 as well as of 1926 . They were also computed for other latitudes for non-departmental purposes.

Sun's bearings for every 5 degrees of latitude, and also for Ahmadnagar and Saharanpur for winter months, were computed takince refraction, parallax and semidiameter into consideration in compliarice with extra departmental requisitions.

All the plumb-line deflections derived from upwards of fire hundred latitude, longitude, and azimuth stations were utilized to pro duce charts on $1 / 5 \mathrm{M}$ scale showing the lines of equal deflections in

meridian or prime vertical over India. From these curves, the average deflections along one degree of meridian or prime vertical were estimated whence the separation of geoid and spheroid was computed. This separation was found for corners of all degree squares, and a final chart was drawn showing the geoidal contours with relation to Everest spheroid. A copy of this chart reduced to $\frac{1}{2}$ scale is given opposite to page 9. Later on, the contours were redrawn on the Helmert-Hayford spheroid. The desirability of such representation of the geoid has been pointed out by the International Geodetic Association.

Following on from this chart a beginning has been made in an investigation of the Figure of the Earth in India: at the same time an attempt is being made to estimate the degree of isostatic compensation in India and adjacent regions. The geoidal charts were sent to the British Empire Exhibition, Wembley, 1923.

Hayford isostatic corrections were computed for sixty-two gravity stations, completing the work begun by Captain Couchman, in Professional Paper No. 15.

Mr. R. L. Faris of the United States Coast and Geodetic Survey informed Mons. C. Lallemand, Reporter for Precise Levelling to the International Union of Geodesy and Geophysics, that in two cases of trans-continental levelling mean water level of the Atlantic and Pacific oceans at the American coasts differed by an amount much greater than could be accounted for by the usual accidental and systematic errors of levelling. Monsieur Lallemand asked for the matter to be investigated in India, which was done, the results being communicated to him.

In the first place it was necessary to compute out values of η_{r} and σ_{R} (probable accidental and systematic errors) for the inland levelling circuits of India. For this the formula given in the Resolution concerning Lecrelling of Precision* adopted at the meeting of the 17 th General Conference of the International Geodetic Association on 25th September 1912, were employed. The values found were:-

$$
\begin{array}{ll}
\eta_{r}= \pm 0 \cdot 0040 \\
\sigma_{R}= \pm 0 \cdot 00071 & \text { foot-mile units } \\
\end{array}
$$

These values were entered in the following formula to find the expected discrepancy between mean water levels (a. w. I.) as determined at two adjacent observatories :-
(Expected discrepaney) ${ }^{2}=\eta_{r^{2}}{ }^{2} \mathrm{~L}+\sigma_{\mathrm{R}}{ }^{2} \mathrm{~L}^{2}+\mathrm{E}_{1}{ }^{2}+\mathrm{E}_{2}^{2}$ where L is the length of Icvelling line in miles; $\mathbf{E}_{1}, \mathbf{E}_{2}$ are the probable errors (p.e.) of the mean of annual determinations of m. w. t. from tidal observatories.

Table I. exhibits all quantities concerned and gives the ratio of the nctual error to the expected error. In eight cases this ratio is less than one and in one only it is greater than one indicating that there is no evilence at all that M. S. E. is different at adjacent tidal stations.

There are also certain other tidal observatories which have been connected by levelling. In these there is every reason to expect that m. w. L. will vary, as the stations are situated up a narrow gulf or on a river. Such is the case actually found. Details are given in table II.

[^1]25.
(Contd.)

26.

Elevation of mean sea level above the geoid in general nil.
TABLE $I .-\eta_{r}^{*}= \pm 0.0040 \mathrm{ft} ; \quad \boldsymbol{\eta}_{r}^{2}=0.0000158 ; \quad \sigma_{\mathrm{R}}+{ }^{2} \pm 0.00071 \mathrm{ft} ; \quad \sigma_{\mathrm{L}}{ }^{2}=0.510 \times 10^{-6}$.

Name $\quad \mathrm{t}$ Ticlal station	Karathi	Bombay	Kärwir	Beypore	Cochin	Nega ${ }^{\text {atam }}$	Madras	Vizagapatam
Probable error of M.S.L..	$\pm 0.0075 \mathrm{ft}$.	$\pm 0.0062 \mathrm{ft}$.	$\pm 0.0184 \mathrm{ft}$.	$\pm 0.0114 \mathrm{ft}$.	$\pm 0.0131 \mathrm{ft}$.	$\pm 0.0309 \mathrm{ft}$.	$\pm 0 \cdot 0140 \mathrm{ft}$.	$\pm 0.0336 \mathrm{ft}$.
Station A	Homblay		Beypore	Cochin	Negapatam	Madras	Vizagapatam	False Point
Station ${ }^{\text {L }}$	Karāclii	Lumbay	Kārwār	Beypore	Cochin	Negapatam	Madras	Vizagapatam
Distance L (in miles) ...	$459 \cdot 7$	5,1.7	$802 \cdot 0$	$113 \cdot 1$	$701 \cdot 1$	$260 \cdot 2$	$508 \cdot 6$	$374 \cdot 9$
L	$0 \cdot 01516$	0.00887	$0 \cdot 01267$	0.00179	0.01108	0.00425	$0 \cdot 00804$	0.00592
$\sigma_{R}^{2} L^{2}$	- 16972	0. 16091	0.32803	0.00652	$0 \cdot 25069$	$0 \cdot 03696$	0-13192	0.07168
$\begin{aligned} & \text { (p.e.) })^{2} \text { of M.S.L } \\ & \text { at station } \mathrm{A} \end{aligned}$	$0 \cdot 00014$	0.00034	$0 \cdot 00013$	0.00017	$0 \cdot 00095$	$0 \cdot 00020$	$0 \cdot 00113$	$0 \cdot 00027$
$\begin{aligned} & \text { (p.e.) of Y.S.L. } \\ & \text { at station } \mathrm{B} \end{aligned}$	$0 \cdot 00006$	$0 \cdot 00004$	$0 \cdot 00034$	$0 \cdot 00013$	$0 \cdot 00017$	$0 \cdot 00095$	$0 \cdot 00020$	0.00113
Sum ...	$0 \cdot 4851$	$0 \cdot 1702$	0-3412	$0 \cdot 0086$	$0 \cdot 2629$	0.0424	(1.1413	0.0790
Square root of $\mathrm{Snm}=$ expected error (i)	$\pm 0 \cdot 696 \mathrm{ft}$.	$\pm 0.413 \mathrm{ft}$.	$\pm 0.584 \mathrm{ft}$.	$\pm 0.093 \mathrm{ft}$.	$\pm 0.513 \mathrm{ft}$.	$\pm 0.206 \mathrm{ft}$.	$\pm 0 \cdot 376 \mathrm{ft}$.	$\pm 0.281 \mathrm{ft}$.
Actual error (2)	+0.327 ft .	-0.078 ft .	-0.473 ft.	+0.084 ft.	-0.425 ft.	+ 0. 0.04 ft .	-0.044 ft.	+0.125 ft .
Ratio (2) to (1) ...	$0 \cdot 47$	$0 \cdot 19$	0.81	$0 \cdot 90$	0.83	$2 \cdot 45$	$0 \cdot 12$	$0 \cdot 45$

TABLE II.- $\eta_{r}^{*}= \pm 0 \cdot 0040 . f t ; \quad \eta_{r}^{2}=0.0000158 ; \quad \sigma_{\mathrm{R}} \dagger= \pm 0 \cdot 00071$. ${ }^{\prime} t ; \quad \sigma_{\mathrm{R}}{ }^{2}=0.510 \times 10^{-6}$.

$\begin{gathered} \text { Sime of } \\ \text { Tidat station } \end{gathered}$	Dablat	Diamond Harbour	Eidderpore	Tuticorin	Pamban	Marmagao	Port Albert Victor	Bhāvnagar
Prubatie error of M.W.L.	$\pm 00256 \mathrm{ft}$	$\pm 0.0262 \mathrm{ft}$.	$\pm 0.0355 \mathrm{ft}$.	$\pm 0.015 \cdot \mathrm{ft}$.	$\pm 0 \cdot 0130 \mathrm{ft}$	$\pm 0.0165 \mathrm{ft}$.	$\pm 00336 \mathrm{ft}$.	$\pm 0.0247 \mathrm{ft}$.
Station A station B	Diamond Harboar Doblat	Kidderpore Diamond Harbour	False Point Kidderpore	Pamban Tuticorin	Negapatam Pamban	Kärwār Marmagao	Bhārnagar Port Albert Victor	Bombuy Bhārnagar
Distance L, in miles)	$53 \cdot 4$	28.8	295.7	$10 \% \cdot 5$	$191 \cdot 1$	$57 \cdot 0$	$88 \cdot 6$	$602 \cdot 9$
$\eta_{r} \cdot \underline{L}$	0.000844	$0 \cdot 000455$	$0 \cdot 00 \pm 672$	$0 \cdot 001620$	0.003019	0000901	0.001400	$0 \cdot 009526$
$\sigma_{\mathrm{R}}^{*} \mathrm{~L}^{2}$	0001454	0.000423	$0 \cdot 44594$	$0 \cdot 0053 \overline{8}$	$0 \cdot 018625$	$0 \cdot 001657$	$0 \cdot 004003$	$0 \cdot 185379$
at station A	$0 \cdot 000686$	$0 \cdot 001260$	$0 \cdot 000272$	$0 \cdot 000169$	$0 \cdot 000955$	$0 \cdot 000339$	$0 \cdot 000610$	$0 \cdot 000038$
at station B	$0 \cdot 000655$	$0 \cdot 030686$	$0 \cdot 001260$	0.000253	$0 \cdot 000169$	$0 \cdot 000272$	$0 \cdot 001128$	$0 \cdot 000610$
Sudi	0003639	0.002824	$0 \cdot 050793$	$0 \cdot 007400$	$0 \cdot 022768$	0.003169	0.007142	$0 \cdot 195553$
Square roct of sum $=$ expected error	t 0.060 ft .	$\pm 0.053 \mathrm{ft}$.	$\pm 0.225 \mathrm{ft}$.	$\pm 0 \cdot 086 \mathrm{ft}$.	$\pm 0 \cdot 151 \mathrm{ft}$.	$\pm 0.056 \mathrm{ft}$	$\pm 0.085 \mathrm{ft}$.	$\pm 0.442 \mathrm{ft}$.
Accepted height of M. W. L. at \bar{A} above M. W. L. at $\mathrm{B}_{\ddagger} \ddagger$	- $0 \cdot 748 \mathrm{ft}$	$\pm 1.990 \mathrm{ft}$.	$-3 \cdot 170 \mathrm{f}_{\mathrm{i}}$,	$+0 \cdot 182 \mathrm{ft}$.	+0.131 ft.	-0.219 ft .	+0.057 ft .	+ 0.24\% ${ }^{\text {ft. }}$

[^2]27. Professional forms and tables.
28. Special map prajections

Tables were prepared for computation of barometric heights bs the International Formula as well as for humidity and other related quantities.

A new set of traverse tables (41 Sur.) has been designed and computed ; and a new form (14 A . Trav.) introduced for use with thes tables. The method is alternative to the use of such traverse tables Shortrede's or Boileau's.

All these barometer and traverse tables are included in Part IIl Auxiliary Tables, 5th edition, 1923.
R.A. and N.P.D. tables for star constants were arranged for reduc: tion of star places in connection with astronomic latitude computation for inclusion in Part IV, Auxiliary Tables, 5th edition. These ar modifications of the tables for facilitating the Computations of star contants by H. H. Turner, m.a.

Full editions of Part II and Part III, Auxiliary Tables, 5th editio: have been printed.

The professional forms of the department are being graduall! revised and reduced to uniform foolscap size. Twenty-four forms hair been remodelled up to 1925 .

Graticules were computed for a map of the world on the Zeniths Azimuth Projection, in which all distances and azimuths from a centrid point-in this case Agra-are correct. The map was drarwn in No.: Drawing Office, Dehra Dūn. This was carried out at the request the Director of Wireless Telegraphy.

Other computations were made for a two-centred and multi-centr: Azimuthal Projection for Army Head Quarters.

The coordinates of ten thousand points were converted from spheri cal to rectangular on behalf of Major General, Royal Artillery, Simla

Several positions fixed by theodolite resection, were computed fic Western Command, Quetta.

The observations of Captain Haycraft of the Aden Brigade determine ranges and bearings of two forts were scrutinised.

A considerable amount of triangulation data was compiled for th Anglo-Persian Oil Company, Muhamarah, Persia.

Some triangulation computations of Commander C. M. L. Scott rss Rangoon Port Trust were examined.

The triangulation pamphlets have undergone a few modification since 1920. An introduction giving a brief account of the to oograpl: of the area has been added to some pamphlets. A layered map on sinall scale is given at the end of the last pamphlet of each $1 / \mathrm{M}$ shef

Work of different observers is kept separate to facilitate futhr adjustment, if necessary. This is done by grouping all minor stationsboth G.T. and topo-and intersected points according to part:- seass and observer, in 15 -minute squares by decreasing latitudes. Th: descriptions of stations are given together at the end.

Azimuths and \log sides are no longer given for minor stations, G.T. or topo. At geodetic stations only, the azimuths and log sides of Geodetic and minor G.'I'. stations and such peaks as are above 24,(000 feet in height are given.

The publication of topo data has been restricted to areas in the vicinity of frontiers. For areas, for which no topo data will be printed, the existence of topographical or traverse data is indicated in the chart accompanying the triangulation pamphlet by stipples and dotted boundary lines.

The Kashmir series $1855-60$ was adjusted in 1921 on the Gilgit series 1909-11, and the Russian triangulation (joining up with the Indo. Russian Connection), which was computed on the Bessel spheroid with an origin at Oche (Osh), was expressed in terms of the Indian triangulation and published.

Data for triangulation pamphlets were compiled and recompiled for one hundred and sixty-two degree sheets, including Mesopotamian triangulation and Turco-Persian Boundary Commission work. Ninetythree degree sheets have been published in pamphlet form during the period under report.

Twenty-one charts showing adjustment corrections by means of graphs to be applied to topo triangulation falling in $1 / \mathrm{M}$ sheets 92,94 , $95,96,102$ and 103 were prepared and supplied to the Director, Burma Circle. The topo triangulation had been based on preliminary values of the Eastern Frontier series which was adjusted in 1915-18 along with the rest of the geodetic triangulation in Burma, and accordingly required adjustment to the final values of the geodetic work.

As mentioned in Records Vol. VII, page 149, a crinoline traverse from Dehra Dūn to Rajpur was executed by Lieuts. Almond and McKay in 1913-14, to fix carefully a number of stations in the vicinity of Rajpur for observation of plumb-line deflection. Triangulation connec-
30.
(Contd.)
31.

Triangulation adjustment 1911-12. 1911-12. As this traverse was carefully executed, the discrepancy found was attributed to accumulated errors in the minor triangulation. More recent triangulation based on Kalanga-Gujrara base, as also Mr. Bond's triangulation of 1911-12, has justified this vier as indicated below.
i. Correction to triangulation based on Kalanga-Gujrara ray as indicated by the traverse of 1913-14.

Traverse stations connected by triangulation	Traversc - Triangulation		Correction to	
	Northing	Fasting	Latitude	Longitade
IT Chmreh	$\begin{gathered} C h s . \\ -0 \cdot 137 \mathrm{~N} . \end{gathered}$	$\begin{gathered} C / s \\ -0 \cdot 041 \mathrm{E} . \end{gathered}$	- 0.090	- $0^{\prime \prime} .031$
III Borlyguard $\quad .$.	$-0.125 \mathrm{~N}$	- o.ors E.	- 0.0x2	- 0.050
IV	-0.128 N .	-0.058 E.	- 0.084	- 0.040
V	-0.101 N .	-0.047 E.	- 0.066	- 0.036
Menn			- 0.080	- 0.040

32. (Contd.)
ii. Correction to Kalanga deduced from triangulation by Lieuts. Angwin and Crone (1924-25) and by Mr. Simons 1924-25).

Observer	Lantitule	Longitude
(Angwin nod Crono) Simons	-0.100 -0.07	-$0^{\prime \prime} \cdot 068$ 0.00
Mean	-0.085	-0.034

These agree very closely with the mean corrections derived from the traverse.

Mr. Bond based his value of Kalanga on Timli and Satikadanda. 'Timli was fired again by Angwin and Crone's triangulation of 1924-\% based on Banos-Top Tibba ray.

Station	Latitude	Longilude		
Timli (Angwin nul Crone, $1924 \cdot 25$)	$30 \quad 22 \quad 19 \cdot 602$	0 78	7	$\begin{gathered} " 1 \\ 44 \cdot 939 \end{gathered}$
$\begin{gathered} \text { Timli } \\ \text { (Bond, 1911-12) } \end{gathered}$	$30 \quad 22 \quad 19-60$	78	i	4t. 96
(Angwin ard Crone)- Bond	-0.06			-0.02

The necessary corrections to local triangulation are collected belor: they will he incorporated in the triangulation promphlet 53 J when republished.

Magnetic declinations with annual changes for London, Paris, Berlin and 16 Indian stations, to be incorporated in the Indian Military Almanac 1925, were compiled in response to a requisition from the Chief of the General Staff, Simla: also for 300 points for departmental use and for 30 stations for non-departmental officials.

Magnetic declinations of more than 2,000 points were computed for the Director Map Publication, Calcutta, for entry on half-inch and quarter-inch maps.

Heights of 200 stations were computed in 1923 in connection with a survey carried out by Waziristan detachment under Captain W.J. Norman, R.e.

Sir A. Stein's aneroid heights in Central Asia observed in 1915. were reduced. Results are published in Appendix \mathbf{B} of Records of the Survey of India, Vol. XVIl.

The Cantonment Survey executed by Major Thuillier at Abbottābād was completely reduced.

Six hundred and ninety-five requisitions for various data from departmental and non-departmental officials were complied with during the period. In some cases the:se requisitions were met by the supply of printed publications, in others it was necessary to extract the required information from manuseript records.

(ii) Tidal Section

Tidal registrations by automatic tide-gauges were continued during the period under report at Aden, Karachi, Bombay (Apollo Bandar), Madras, Kidderpore and Rangoon ; and at Bombay (Prince's Dock) to May 1924, at Moulmein to November 1924 and at Port Blair to April, 1925. The tidal observatories at these last three ports were dismantled, further registration beiner deemed unnecessary to this department. At the reguest of the Bassein Port authorities, a tide-gauge was installed at Bassein in November 19:33, since when tidal registrations have been obtained, Regular tidal registrations by an antomatic tide-gauge have also been received from Basrah. The tide-gauge was not installed, nor has it ever been inspected, by this party.

Tidal registrations serve several purposes. In the first place they provide data on which prediction of future tides is based. For this purpose five years record is rlesirable. In the scoond place they enable harbour surveyors to reduce soundings, taken at any time, to datum of charts. Finally they allow a reliable comparison to be made between predicted values of times and heights of high and low water and the actual values: thereby confirming the former or oceasionally showing need of modification of prediction constants. While harmonic analysis of the tilal observations is no longer carvied out in the case of the long

Magnetic declination.

34.

Height computation.

35.

Cantonment Survey.
36.

Requisitions.

37.

Observatories.
38.

Tidal registration.
38. established observatories, comparison of predicted with actual value is (Contd.) made (vide tables at pages 31-67).

Comparisons are also made in the case of the ports Bhāvnagar, Chittagong and Akyab, where tide-pole readings, during daylight only, are taken by the Port authorities.

A complete list of the stations at which tidal registrations have been carried out by this department since 1874, when tidal observations were inaugurated, is given below. Those now in operation are shown in italics. In the case of Basrah, the Survey of India has so far been concerned only with predicting tides from tidal records supplied bf the Port authorities.

List of Tidal Stations

$\begin{aligned} & \dot{8} \\ & \dot{Z} \\ & \stackrel{\rightharpoonup}{B} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	Station					Remarks
1	Suez ...	Anto. matic	1897	1903	7	
2	Forim	,	1898	1902	6	
3	Alden	,	1879	Still working	46	
4	Maskat	"	1893	1898	5	
5	Bushire ...	"	1892	1901	8	
			$\{1868$	1880		* Small tide-
6	Karãchi	"	(1881	Still working	$44)^{57}$	gange working
7	Flanatal	"	1874	1875	$1)$	Tide-T'Tibles nod
8	Navānar	,	1874	1875	$1\}$	published
9	Okha Point ...		$\left\{\begin{array}{c}1874 \\ \text { Re-started }\end{array}\right.$	1875	1 1 2	Year 1904-05is
9	Okha Point	,	$\{1904$	1906	$1\}^{2}$	excluded
10	Porbundar	Personal	1893	1894	2	
10 A	Porbandar	Automatic	1898	1902	2	Years 1898, 1899 \& 1902 arc exclinded
11	Port Albert Victor (Käthiāwar)	Personai	1881	1882	1	
11A	Fort Albert Victor (Kâthiăwàr)	Anto. matic	1900	1903	4	
12	Bhàrnagar ...	"	1889	1894	5	
1:1	Bombiny (Apollo Bandar)	,	1878	Still working	47	
14	Bombay (l'rincés Drek)	"	1848	1924	37	Dismantled May 1924
15	Mnrmagao (Gmi) ...	"	1894	1889		
16	Kirmar	"	1878	1883	5	
17	- Berpore	..	1878	1884	6	
18	Corhin	\bullet	1886	1892	6	
19 20	$\begin{array}{ll}\text { Tnticorin } \\ \text { Minieny } & \ldots \\ \end{array}$	"	1888	1893	5	
20	Minieny $\quad .$.	"	1891	1896	5	

List of Tidal Stations (Conld.)

39.
(Cnnta.)

Up till 1921 inspections of tidal observatories were always carried out, either by the Officer in Charge of Tidal Operations or by the Tidal Assistant. For reasons of economy it was decided in 1922, that ins-
40.

Inspection of Observatories. pections should be made by any suitable officer of the department who might be in the locality of a tidal observatory. During the period under review inspections as detailed on page 18 were carried out.

40

(Contd.)

Station		lnspected by	Date of inspection
Aden	\ldots	Lieut-Col. S.W.s Hamilton D.s.o., r.e.	Octcber 1924
Karachi	...	Mr. E.C.J. Bund V.D.	February 1923
	.	Mr. D.H. Lnxa	December 1924
Bombay (A pollo Baıdar)	\ldots	Mr. E.C.J. Bond V.D.	February 1923
		Mr. D.H. Luxu	December 1924
```Bombar (Prince's Dock) Maclras```	$\ldots$	Mr. E. C. J. Bond v d.	Febraaly 1923
		Mr. li. U.J. Houd V D.	February 1923
		Mr. D. H. Luxa	November 1924
Kidderpore	$\ldots$	Mr. N. R. Mazumdar	November 1924
		Mr. U. H. Luxa	Jecember 1923
		Mr. D. H. Luxa	November 1924
Langoon	$\cdots$	Mr. N. I. Mazumdar	Jecember 1922
		Mr. D. H. Luxa	December 1923
		Mr I). HI. Lnxa	November 1924
Moulmein	$\ldots$	Mr N. IL Mazumdar	Vecember 1922
		Mr. I. H. Laxa $\quad$..	November 1924
Bassein		Mr. D. H luxa	November 1924
Port Blair	...	Mr. D. H. Luxa $\quad$..	November 1923

41. Moulmein tidal observatory was closed in November 1994 and Port

Changes in tidal observatories. Blair observatory, in April 1925. The tide-gauges were dismantled and sent to Dehra Dūn.

A new tidal observatory was erected at Bassein in October 1923 by the Port Advisory Board, who were in favour of a resumption of tidal observations at this station after a lapse of 20 years. The selection of the site and the construction of the observatory was carried out hy the Public Works Department, Bassein. Mr. D. H. Luxa, Tidal dssistant, Survey of India, inspected the observatory and installeds tillequge in it in November 192:3. Tidal registrations were resumel at Bascein on 28 th November 1923. I'he observatory was again insuerted during November 1924, when the tide-gange was found to have worked well: there had been no breaks in the tidal registrations. The heights recorded had a tendency at times to remain stationary, due to the counterpoise weight attached to the clock having trea ton heavy, and this was rectified during the inspection. A large quantity of mid and silt was found in the interior of the cylinder and alow around its base, which was removed by divers who reported that the inlet holes were quite free, and that there was a clearance of at least a foot between the bottom of the cylinder and the river bed. vations.

The Basrah observations originally consisted of hourly readings against a tide-pole of the height of the water taken throughout the day and night, copies of which were supplied to this department weekly by the Director, Inland Water Transport, Mesopotamia. This arrangement was continued until the $\$ 1$ st March 1922 . Thereafter an antomatic
tide recorder was erected at Ma'qil, and weekly diagrams, showing the tidal registrations obtained by it, were received from the Port Director, Basrah, until 30th April 1922, after which date, owing to the very heavy silting during the Hoods, the tide recorder failed to function and was put out of action temporarily. On 2nd November 1922 registrations were resumed at 'l'anumah and the diagrams without any serious breaks have been received regularly since then.

With effect from the end of 1921 harmonic analysis of tidal observations at Aden, Karāchi, Bombay, Madras, Kidderpore, Rangoon, Moulmein and Port Blair was discontinued. This mas decided on alter consultation with Professor Horace Lamb, f.r.s. and Dr. Doodson, d.sc. of the Tidal Institute, Liverpool. The latter considered that more useful results could be obtained by following his method, recently worked out, of intensive analysis of short periods of observations in preference to a continuance of the less complete harmonic analysis ordinarily used. No such intensive analysis has as yet been possible in India.

Ordinary harmonic analysis has been carried out for Basrah observations (in which a break in registration lasted from last May to 2nd November 1922) for the three yearly periods beginning 25th A pril 1921, Ist January 1923 and lst January 1924. The middle period was analysed completely for 33 components and the other two periods for 10 components only. The results are given in tabular form on page 20.

T'wo adding machines made by Messis. Burroughs \& Co. of Detroit, Michigan, U.S. America, were employed for the first time in 1924 in connection with the Jong summations, resulting in considerable saving of time and labour. The more complete analysis of 1923 was carried out with the intention of attempting prediction of a riverain port by means of the 'lide Predicling Machine in place of the usual empirical tables. Reference to this is made in $\$ 45$ et weq.

No harmonic analysis of the resistrations of the newly installed tidal observatory at Bassein has been nade so far.

TABLE III.-Values of the Tidal conutants for Basrah

Tide Symbol	1931-22				1923*				1924			
	$A_{0}=6 \cdot 439$				$\mathrm{A}_{0}=6.085$				$\mathrm{A}_{10}=5.8 \mathrm{~s} 3$			
	R	$\leqslant$	H	$\kappa$	R	$\zeta$	H	$\kappa$	R		H	*
	feet											
$\mathbf{S}_{1}$	$0 \cdot 062$	$230 \cdot 38$	0.062	$330 \cdot 38$	0.121	$212^{\circ} 18$	0.121	$212^{\circ} 18$	$0 \cdot 115$	197. 29	0.115	197.20
$\mathrm{S}_{2}$	0.318	185.36	$0 \cdot 318$	185.36	0. 287	169.02	0.287	169.02	0.265	161.22	0.285	181.21
$s$ S					0.111	307.28	0.111	307. 28				
$\mathrm{S}_{6}$					0.004	25.35	0.004	25.35				
$\mathrm{S}_{\mathrm{H}}$					0:004	137.01	0.004	137.91				
M					0.07+	143.64	0.049	263.91				
$\mathrm{m}_{2}$	1-2:26	17.4.33	1.183	106.75	1-109	87.68	1.070	99.89	1.077	929.83	1-044	102.15
$\mathrm{M}_{3}$					0.074	143.64	0.049	263.01				
M					0.152	$45 \cdot 45$	$0 \cdot 141$	100.88				
$\mathrm{M}_{5}$					0.006	11.80	0.015	118.54				
$\mathbf{M s}_{8}$	i				0.002	$275 \cdot 71$	0.002	44.58				
$O_{1}$	0.259	16.62	11.317	1.41	0.275	158.54	0.338	5.05	0.312	47.32	$0 \cdot 367$	358.73
$K_{1}$	10.317	46.39	0.616	$33 \cdot 26$	0.568	201.72	0.640	28.98	0.617	$205 \cdot 15$	0.679	29.14
K.,					0.090	322.01	0.119	$157 \cdot(5$				
$r_{1}$	. $0 \cdot 170$	314.10	ก.171)	11.3A	0.203	183.97	0.203	353.99	0.185	$200 \cdot 86$	0.185	11.11
$J_{1}$	$\therefore 0.045$	148.09	U. 053	221.05	0.037	230.48	0.045	310.06	10.040	343.94	0.046	131.95
$\psi_{1}$	(0.029	103.66	0.036	323.11	0.059	48.20	0.072	1.33	0.085	36.42	1). 100	5.73
1.1					0.110	35-6	1.177	133.38				
$\mathrm{N}_{2}$					0. 2.23	284.90	0.215	63.83				
$\cdots$					0.077	88.95	0.075	$47 \cdot 32$				
u					$0 \cdot 119$	127.45	0.102	191.80				
T:					0.012	300.32	0.012	301-86				
M.3.					$0 \cdot 105$	153.51	0.101	185.73				
20m:					0.032	71.86	0.330	30.64				
$2 \mathrm{~N}_{2}$					0.020	51.39	0.019	206.85				
( M , $\mathrm{N}_{\text {c }}$,					0.088	260.03	0.120 .4	71-09				
(M:K) ${ }^{\text {( }}$,	0.175	170.63	0.19n	48.91	0.207	183.41	0.225	42.99	$0 \cdot 163$	85.03	0.174	42,24
$\left(2 M_{1} \mathbf{K}_{1}\right)_{3}$	0.123	93.02	0.120	11.08	0.1.4	123.93	0.151	$1 \cdot 10$	0.155	282.37	0.161	9.08
$\mathrm{mm}^{\mathrm{Mm}}$					0.115	156.52	1). 129	49.89				
¢ Mi					0.021	331.44	$0 \cdot 163$	$130 \cdot 63$				
$2 . \mathrm{Mat}$					0.249	93.62	0.240	01-40				
号 Sa					1.853	140.07	1.853	60.05				
98.					1-863	298.29	1 -853	136.26				

*The port was worked as an open sea port in 1923 ooly

Predictions of tides for the years 1924 and 1925 , were made for the following ports :-Suez, Perim, Aden, Maskat, Basrah, Bushire, Karāchi, Okha Point and Bet Harbour, Porbandar, Port Albert Victor, Bhāvnagar, Bombay, Marmagro, Kārwär, Beypore, Cochin, Tuticorin, Minicoy, Pämban Pass, Colombo, Galle, Trincomalee, Negapatam, Madras, Cocanīda, Vizagapatam, False Point, Dublat, Diamond Harbour, Kidderpore, Chittagong, Akyab, Diamond Island, Bassein, Elephant Point, Rangoon, Amherst, Moulmein, Mergui and Port Blair.

Predictions for the year 1926 were made for the same ports excepting Perim, Maskat and Minicoy; these ports being omitted as the demand for 'lide-Tables for them was too small tojustify the expenditure involved in prediction and publication.

The amounts realised by the sale of Tide-Tables were as follows :-

> Rs. 10172-7-0 in 1922-23
> Rs. 12395-13-0 in 1923-24
> Rs. 11241-9-6 in 1924-25

These amounts are exclusive of the commission allowed to the Agents and the cost of Tide-Tables which are supplied gratis under Government orders. Advance copies in manuscript or proot stage of the TideTables for the years 1924, 1925 and 1926 for Suez, Aden, Bushire, Karāchı, Bombay, Madras, Dublat (Sãgar Island), Diamond Harbour, Kidderpore (Calcutta), Chittagong, Rangoon, Elephant Point, Mergui, Marmayao, Trincomalee, Colombo, and Bhāvnagar were despatched to the Hydrographer to the Admiralty by about April of preceeding year for inclusion in the Admiralty Tide-Tables.

Similarly advance copies of the Hooghly River Tide-Tables were supplied to the Deputy Conservator of the Port of Calcutta and to the Port Officer, Calentia, by about June. Additional advance information regarding the Hooghly tides during the months February to April 1925, 1926 and 1927 were supplied to Messrs. Thomas Cook and Son, Calcutta, in connection wiflitheir advance shipping American Tourist programme.

The tidal predictions are ordinarily carried out on the Tide Predicting Machine; lut in the case of the riverain ports Dublat, Diamond Harbour, Kidelerore, Chittagong, Rangoon, Elephant Point, Amherst, Monlmein and liasrah, the machine is used only for the diurnal components whereby a correction is derived and applied to the times and heights given by empirical charts. This process of tidal prediction for riverain ports is about twice as laborious as that used for open sea ports and the results obtained are less precise. Considerable endeavour has been made to reduce this labour and to improve accuracy-so far without definite result; but it is still hoped that progress will be made in this direction. Some account of the work done is now given.

[^3]Tidal. predictions

## 45

Methods of Prediction.

46
Riverain ports prediction research.
(2) the times of these events would differ from those shown by the tide machine curve by amounts depending on the height of the tide.

Trials were made in the case of Kidderpore (Calcutta) which lies about 120 miles from the mouth of the Hooghly and where the average depth of water at low tide is only about 3 fathoms. Harmonic analysis of the observations of 40 years had been made for 33 components follow. ing the ordinary method for open sea ports.

It was recognised that as the process of analysis does not consider many tides which, though small in open seaports, are liable to be considerable in an estuary and more so in a shallow channel, the results could not be wholly trustworthy. Still it was hoped in consideration of the large period analysed that they would be adequate for a preliminary enquiry. Accordingly the 24 components of the Tide Predicting Machine were set to the values given by the analysis and the curves for a year were run off on the scale of $6^{\prime \prime}=1$ day. In the first place the mean rater levels were made to coincide and the differences of times of high and low water as given by the curves from those actually given by the tide-gauge records were determined and classified with respect to height of water.

Records for a month were dealt with and an empirical corrention table was formed. This seemed to promise some satisfactory result: for the machine curves when corrected by the tabular amount in term: of the height were of about the same precision as those given by the ordinary empirical method for riverain ports. It was found however that the time scale of $6^{\prime \prime}=1$ day was too small to admit of ver! satisfacto:y readings. Accordingly certain modifications were made on the Tide Predicting Machine enabling curves to be run on scale of $24^{\prime \prime}=$ 1 day. These were corrected for the mean weter level as deduced from the actual daily means cleared from the effects of short period tides and $n$. and $\Omega \eta$ only : and were then compared with actuals at every foot of leight, and results classified. Here difficulty was experienced in that the mean water level was not truly predicted. Further the time correetion deduced for various heights differed according as the water was rising or falling. A mean value of those found for rising and falling water was deemed to be applicable to high or low waters occurring at the particular height.


No explanation for the differences between results for rising and falling water was found. An attempt to explain this in terms of rate of rise or fall of water was unsuccessful.

Actual and harmonically predicted times of high and low water for the complete year 1920 were taken out afterwards, and their differences (A-P) classified according to predicted heights of high and low water with the result:-


With these tatular values the predicted times as obtained from the harmonic curves were corrected, and (A-P) computed out for the month of March. The crrors were found to be about the same as in the riverain method in nee now, but the predicted heights from the harmonic curves, even if comperifed for the difference in the mean water level as obtained from tha artual daily means cleared for short and long period tides, are slightly i:iferior.

Methord	Time				Height			
	$\mathrm{F}_{1}$ $\mathrm{~F}_{3}$				$\mathrm{E}_{1}$		$\mathbf{E g}_{\mathbf{g}}$	
	H.W.	5.W.	H.W.	L.W.	II.W.	L. W\%.	H.W.	T. W.
Harmonio	minutas	minutos	minutes	minules	fret	fert	fret	tert
methorl	$+3 \cdot 1$	+ 11.5	12.5	14.8	$+0 \cdot 1$	$+6 \cdot 1$	+ 0.5	$0 \cdot 6$
mothod	$-7 \cdot 7$	$-1.0$	$19 \cdot 4$	$9 \cdot 8$	$0 \cdot 0$	$+0 \cdot 1$	0.7	(1.3

46. 

$$
\mathrm{E}_{1}=\frac{\mathrm{T}_{1}-\mathrm{I}_{2}}{n} \quad \mathrm{E}_{2}=\frac{\mathrm{I}_{1}+\mathrm{I}_{2}}{n}
$$

where $n$ is the number of high or low waters and $T_{1}$ is the total of positive ( + ) errors, and $\mathrm{T}_{2}$ is the total of negative ( - ) errors.
47.

Mean water level at Kidderpore.

An investigation of the mean water level at Kidderpore, which was in extreme cases as far as 3 feet in error by prediction (whether harmonic or by the ordinary riverain empirical method) was next taken up, as it was impossible to apply the time correction just considered unless the height could be predicted more accurately.

The actual daily means of Kidderpore were cleared from the effect of the usual short and long period tides, and then submitted to harmonic analysis to detect the presence of any other long period tides. Four years' observations 1916-19 were dealt with and the residual values plotted. No similarity in the curves for the several years existed. Irregular discrepancies lay within 1 foot for the first $8 \frac{1}{2}$ months but from September 15 to November 15, the discrepancies were larger: in October the curves of 19]6 and 1917 were about 2 feet above the observed mean water level line and the other two curves of 1918 and 1919, 2 feet below.

Similar discrepancies which occur between actuals and values predicted by the old method are as follows:-

1916	3rd Oct.	$\begin{gathered} \mathrm{A} \cdot \mathrm{P} \\ , \end{gathered}$	$\begin{aligned} & +2^{\prime} \\ & +2^{\prime} \end{aligned}$	$6^{\prime \prime}$	H.W. L.W.		ov.	A-P $=$	$+2^{\prime}$ $+2^{\prime}$		$\begin{array}{ll}9^{\prime \prime} & \text { H.W. } \\ 5^{\prime \prime} & \text { L.W. }\end{array}$
1917	13 th Oct.		$\begin{aligned} & +2^{\prime} \\ & +3^{\prime} \end{aligned}$	$\begin{gathered} 11^{\prime \prime} \\ 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { H.W. } \\ & \text { L.W. } \end{aligned}$		Nov.	",	$\begin{aligned} & +2^{\prime} \\ & +2^{\prime} \end{aligned}$		$\begin{aligned} & 5^{\prime \prime} \\ & 3^{\prime \prime} \text { L.W. } \\ & \text { L.W } \end{aligned}$
1918	xth Oet.	,	-1 -1	$9 \prime$ $6^{\prime \prime}$	H.W.		Oct.	"	$-2^{\prime}$ $-2^{\prime}$		S' $3^{\prime \prime}$ H.W. $3^{\prime \prime}$ L.W
1319	3 d Oct.		-1 -1	$0 \prime$ $3^{\prime \prime}$	H.W. L.W.		Oct.	,	$-]^{\prime}$ -1		(1) H.W.

These irregularities seem to follow the rainfall in bengal in October.

October 1916	$11 \cdot 65$	inches	
$"$	1917	$13 \cdot 57$	$"$,
$"$	1918	1.08	$"$
$"$	1919	$3 \cdot 69$	$"$,

but in other months greater variations in rainfall have no corresponding change of mean water level.

Water levels on the Ganges from Allahaiband downwards to Raj: mahal were taken out; but no connection with mean water level al

Kidderpore could be established. Should subsequent investigation clear up these points, it is possible that the empirical method of time correction sketched above may become useful.

At all stations at which self registering tide-gauges are maintained, and at Bhāvnagar Chittagong and Akyab where tide-pole readings are taken by day, predicted values are compared with the actual observed times and heights of high and low waters. These comparisons are abstracted in an improved form, with a view not only to indicate that satisfactory results are being obtained when such is the case, but also to indicate whether improvement in prediction is possible. These abstract comparisons are given at pages 3l-67 and in the next Geodetic Report, certain corrections to predictions which have been deduced by their means will be mentioned.

For the purpose of continuity with the past, the comparison of actual and predicted values have also been taken out in the old manner.

Abstract of average errors in time and height.

48.

Comparison
of actual with predicted value. Errors of prediction.
48. (Contd.)

From comparisons made between the actual and predicted tims and beights of high and low waters for the years 1922, 1923 and 1924, the predictions for each of the above years were found to be as accurate as those for the preceding years with the following exceptions:-
(1) Basrah predictions for 1922 had deteriorated as regards time.
(2) The 1923 predictions for Karãchi, Bhāvnagar, Port Blair, Kidderpore, Rangoon and Moulmein were not as good as those for the previous year ( $19 \pm 2)$ as regards time, and to a lesser extent as regards height. A distinct improvement however had taken place as regards the predicted times of high and low waters at Basrah.
(3) The 1924 predictions showed a marked improvement: regards both time and height at all the stations, except at Akyab, Rangoon and Basrah where a slight deterioration in time had taken place, and at Moulmein as regards the heights of low waters.

The greatest differences between the actual and predicted heights of low water for the years 1922, 1923 and 1924 at the under mentioned riverain ports where automatic tide gauges were at work, were as follows :-

Kidderpore, 2 feet 8 inches, on 21 st September 1923.
Rangoon, 2 feet 11 inches, on 5th August 1924.
Moulmein, 4 feet 8 inches, on 14th February 1923.
Basrab, 3 feet 8 inches, on 4th and 5th February 1924.
Bassein, 5 feet 0 inch, on 3rd August 1924.
The predicted heights were higher in the case of Kidderpore and Moulmein and lower in that of others.

Certain additions have been made to the Tide Predicting Machioe by Dr. Hunter which have led to some changes in procedure as compared with that followed in England. The height curve is now run on one fifth of the time scale formerly used and the times are read of оп a separate chronograph sheet.

The following is an account of the new arrangement (reprintel from the Journal of Scientific Instruments for 1924).
'The Tide Predicting Machine, designed by Lord Kelvin and Mr. Edward Roberts and built for the India Office, was for many years at the National Physical Laboratory, where it has been seen by many necple. In 1922 it was sent to India, and is now employed ky the Survey of India at Dehra Dūn. The machine traces a height-time curve on a roll of paper some 22 inches wide, by means of a pen carried by a wire which passes over and under the wheels of the 24 "compo. nents". The time scale generally employed was 6 inches $=04$ hours It was found troublesome to the personnel available to read off times ol bigh and low water from the curve with sufficient precision. There is naturally some vagueness as to the precise moment of maximum or minimum ; but though this does not necessarily cause any serious far in the resulting Tide-Tables, it renders the ordinary system of checking


proofs (and the measurements and copy from which they have resulted), br the method of reading the differences of times of alternate high waters, much more troublesome On this account it was at first thought desirable to run off a second curve-the differential with regard to time of the height-time curve- whose ordinate vanishes at the time of high or low water. This was soon made more convenient by dispensing with tracing the curve, and causing the pen to break an electric contact when crossing the zero line, this event being recorded on a clronograph drum actuated by the $S_{1}$ component. It was then seen that a similar arrangement with multiple contacts corresponding to sucessive values of ordinate could conveniently be made to record the main character of the ordinary height-time curve. This arrangement indicates the times the predicted height of water reaches the various selected heights, e.g. with a tide range of 15 feet it may be conveniently arranged to show the times of the water reaching every whole foot of height above datum throughout the whole range. It was thought that this information would be of greater value to mariners than the bare statement of height and time of ligh and low waters, with no information regarding water heights at intervening times.'
'The arrangement now to be deseribed was made with this object in view. As will be seen from Chart* II given opposite to page 27 the time of water reaching each foot is shown by a notch in the day line. The notches are upwards for ascending water, and downwards for descending water; while a level near to mean water level is indicated by a break in the line.,
'The chiff difficulties encountered were in making the contacts certain in action, while keeping friction forces very small, especially for those curves where the duration of contact was very small owing to rapid fall or rise of the curve. In this connection it may be noted that the wire which actuates the tide-curve pen is essentially of small diameter (•005 inch was generally used) and is 32 feet long. A small variation in tension of this wire extends it visibly, while if a thicker wire he used inaccuracy arises owing to this not being sufficiently flexible to fit close to all the wheels over which it passes. As regards duration of contict it is to be mentioned that the chrono-paper passes at the rate of ahout 23 mm . per second, and that a whole year's predicrion is dealt with in about $2 \frac{1}{2}$ hours.'

[^4]'In Fig. $1 A A$ is a brass plate which is attached to the back of he pen of the tide machine, with which it $m$ oves up and down when tlif

machise is set in motion. $B B$ is a bell-crank lever provided with a piro: grainit by the bracket $($ and the plate $A A$. The horizontal arm of $B l$ ederies two plativum points $P_{1}, P_{2}$ near its left end and the vertion arm caries at its lower extremity the wheel $W_{1}$. There is a second wheel $H_{s}$ whose pivots are carried by the plate $A A$ and the bracket 4 These two wheels $W_{1}, W_{8}$ roll on the edges of a fixed brass :trip $\left.s\right\}$ being maintained in contact by the pressure of a spring $R$.'
'The strip $S S$ is shown in dotted lines, being in front of the plate $A A$ and the horizontal arm $B$; it is of accurately uniform breadth, and is slotted at intervals of an inch for the pieces $k, k$. It is made d $T$ - section to secure rigidity, and the pieces $k, k$ are adjusted la eralls by screws working in the vertical member of the T . The pieces $k, k$ gir slightly pointed as shown, and can be made to project a small amount (actually about 0.3 mm .) beyond the right edge of the strip $S S$. As
the plate $A A$ is carried up aud down with the pen, the wheel $W_{1}$ rides over the points of the pieces $k, k$ and rocks the bell-crank lever, causing the platinum points $P_{1}, P_{2}$ to move slightly up and down.'
'The part $E E$ bears two platinum points $Q_{1}, Q_{2}$ in its upper and lower jaws, $Q_{2}$ being adjustable in the direction of its length. This part has a pivot $i$ with insulating bush, and is balanced by the counterweight $m$. Its motion is restricted by the insulators $I_{1}, I_{2}$ mounted excentrically on the two screws $G_{1}, G_{2}$. These screws are sufficiently tight-fitting to maintain their position, and by turning them to suitable positions the rotation of $E E$ is regulated as desired. $E E$ is actuated by the friction of the fixed wire $F F$, which lies in a groove cut in $E E$ and also bears on the two pallets $H_{1}, H_{2}$. These pallets are borne on arms which can be rotated, and by this means the drag of the wire on $E E$ can be adjusted; this can also be done by modifying the tension of the wire $F F$. 'The wire $F F$ is attached to the frame of the machine at the top of the pen slide by means of an insulator and passes through another insulator at the lower end of the slide, being kept in tension by an attached weight. It makes metallic contact with $E E$ and forms a portion of the chronograph electric circuit.'
'It will be seen that when the plate $A A$ is ascending the upper jaw is pressed agrainst the insulator $I_{1}$ by virtue of the drag of the wire $F F$, while when $A A$ is descending the lower jaw of $E E$ presses against $I_{2}$. 'The following events occur when $A A$ is set in motion:
(1) $A A$ ascending ; $E$ is pressed against $I_{1}$. Platinum points $P_{1}$, $Q_{1}$ and $P_{2}, Q_{2}$ are not in contact until wheel $W_{1}$ rides over one of the projections $k$, $k$, when $P_{2}$ makes contact with $Q_{2}$.
(2) $A A$ descending; $E$ is pressed towards $I_{2}$, but is held slightly away from it by the platinum point $Q_{1}$ bearing on $P_{1}$. When $W_{1}$ rides over one of the projections $k, k, P_{1}$ separates from $Q_{1}$ and $E$ presses on $I_{2}$.
'The terminals of the chronograph pen circuit are joined to the strip $S S$ and the wire $F F$ respectively. It is obvious that the effect of $W_{1}$ riding over a projection $k$ is to make circuit in the case of $A A$ rising; and to break ricuit in the case of $\boldsymbol{A} \boldsymbol{A}$ falling. This is represented on the chart by _-I and T-I respectively. A change of direction of motion of $A A$, which corresponds to high or low water, is indicated by $1^{-}$and ; but owing to variation in tension, and hence in length, of wire, the actual time of this event is somewhat displaced. In order to provide a reference point, frequently repeated on the chronosheet, an additional electromagnet has been introduced, which lifts the chrono-pen from the paper when contact is established, making the indication _on the sheet. This is arranged for by the provision of a springy contact placed near mean water level, against which the wheel $W_{1}$ presses in passing.'
'The chronograph is of the drum variety, and its shaft can be coupled to the square shanks of any one of the 24 tidal components. Hitherto the component used has been $S_{1}$, so that the lines of chronosheet correspond to 24 hours,'
49. 'It may be of interest to state that a "Research Fountain Pen*"
has been used with excellent results for the chronog aph. This is a very light pen and has a very steady and ready flow of ink. Inking begins with very light pressure and there is no blotting or leaking, Ordinary fountain pen ink has been used; when photographic reproduc. tion is intended a little lamp black is mixed with the ink.'

Riverain tidal pradic. tion.

In the case of predictions for riverain ports the empirical tables supplied from England have been used to prepare charts, which have been found more convenient in use than the tables. The monthly mean values of heights and times, corresponding to the apparent times of moon's transit are first brought in terms of mean times of transit. The values for height are plotted without alteration. In the case of the times however, the curves are drawn with the monthly mean values somewhat modified, so as to give the curves an easier gradient and enable the values to be read with more precision. For this purpose the monthly mean values relating to the mean times of transit are subtracted from the times of moon's transit in the case of low waters and vice versn in the case of high waters. With these residual values, after applying the correction to standard time, when necessary, the plotting of the curves is carried out. These residuals have been taken to represent the values for the lyth day of each particular month, so that no smoothing is required between the values obtained, for the end of one month and the beginning of the next. Two sets of charts are prepared, one for high water comprising 8 separate charts for heights and times of high waters and another similar 8 charts, for heights and times of low waters. Each chart exhibits 4 curves in 4 different inks covering a period of three months, and one set covers a whole year of heights or times of high or low waters.

As a further saving of labour, times of moon's transit citc. hay only been worked out for alternate transits. This led to eaving of $30^{\circ}$, in preparation of Tide-Tables.

[^5]T'ABLE IV.-Mean errors $E_{1}, E_{2}$ for 1922
BASRAH


TABLE V.—Mean errory $E_{1}, E_{9}$ for 1923
basrat


TABLE VI.- Mean errors $E_{1}, E_{2}$ for 1924
bagrah


TABLE VII.-Mcan errors $E_{1}, E_{2}$ for 1922
ADEN


ADEN


TABLE IX.—Mean errors $E_{1}, E_{2}$ for 1924
ADEN


TABLE X, Mean errors $E_{1}, E_{2}$ for 1922
karachi

$\begin{gathered} \text { PKRIOD } \\ 1982 \end{gathered}$	MEAN ERBORS $E_{1}$ is with regard to sign							$\mathrm{E}_{2}$ is without regard to sign				Number of   errors erceeding    30 $0 . \theta$   minutes    of time     foot of    height			
	$\mathrm{E}_{1}$							$E_{2}$							
	$\text { Tlme }{ }^{\text {H. W. }} \text { Height }$			$\text { Time } \quad \text { L. W. }{ }_{\text {Height }}$				$\underset{\text { Time W. }}{\text { Ht. }}$		$\underset{\text { Time }}{\text { L. Wt. }}$			$\begin{aligned} & \dot{\mathrm{H}} \\ & \dot{H} \end{aligned}$	-	-
	minutes		feet	minutes		feet		minutes	feet	minuter ${ }^{\text {a }}$	feet				
Jan. 1-16	+	-	$+\begin{gathered}-1 \\ 0 \cdot 1\end{gathered}$	+ $6 \cdot 2$		+ 0.0		11.4	$0 \cdot 2$	$16 \cdot 7$	0.1	1	4	0	0
17-31	1.5		$0 \cdot 5$	$4 \cdot 4$			$0 \cdot 2$	10.8	$0 \cdot 5$	$10 \cdot 5$	$0 \cdot 2$	2	0	0	0
Feb. 1-16		$3 \cdot 4$	$0 \cdot 3$	$13 \cdot 6$			$0 \cdot 1$	$7 \cdot 8$	$0 \cdot 3$	$20 \cdot 1$	$0 \cdot 2$	0	5	0	0
17.28	1.7		$0 \cdot 4$		0.4		0.2	11.6	$0 \cdot 4$	$9 \cdot 8$	$0 \cdot 2$	2	0	0	0
Mar. 1-16		$4 \cdot 9$	$0 \cdot 3$	$9 \cdot 6$		$0 \cdot 0$		$9 \cdot 4$	0.3	17.8	$0 \cdot 2$	0	5	0	0
17-31	$6 \cdot 1$		$0 \cdot 4$	$6 \cdot 2$			$0 \cdot 1$	$9 \cdot 0$	$0 \cdot 4$	$10 \cdot 0$	0.2	0	0	0	0
April 1-16	$3 \cdot 3$		$0 \cdot 4$	$12 \cdot 2$			0.1	6.5	$0 \cdot 4$	17.1	$0 \cdot 2$	1	2	0	0
17-30		$3 \cdot 6$	$0 \cdot 6$	$6 \cdot 3$			$0 \cdot 4$	$10 \cdot 4$	$0 \cdot 6$	$13 \cdot 1$	0.5	0	2	1	0
May 1-16	0.7		$0 \cdot 2$	$8 \cdot 3$		0.5		$5 \cdot 1$	$0 \cdot 2$	11.4	0.5	0	3	0	0
17-31		$6 \cdot 1$	0.6	$4 \cdot 5$			$0 \cdot 4$	$9 \cdot 0$	0.6	10.8	0.5	0	0	7	5
Jnae 1.16		1.0	$0 \cdot 5$	$8 \cdot 3$			$0 \cdot 2$	$8 \cdot 4$	$0 \cdot 5$	13.6	0.2	0	1	0	0
17-30		$3 \cdot 0$	$0 \cdot 5$	$7 \cdot 3$			0.3	8.9	$0 \cdot 5$	$12 \cdot 4$	$0 \cdot 3$	0	1	0	0
Ju!y 1-16		$2 \cdot 1$	0.5	$2 \cdot 9$			$0 \cdot 1$	9-6	0.5	$9 \cdot 3$	0.2	2	1	0	0
17-31		1.8	$0 \cdot 3$	$12 \cdot 7$		$0 \cdot 0$		14.0	0.3	14.8	0.2	2	4	1	0
Aug. 1-10		$3 \cdot 3$	$0 \cdot 4$	$3 \cdot 1$			$0 \cdot 1$	$7 \cdot 6$	$0 \cdot 4$	$12 \cdot 4$	$0 \cdot 2$	1	0	0	0
17.31		$2 \cdot 9$	$0 \cdot 1$	$13 \cdot 0$		0.1		9.1	$0 \cdot 2$	$14 \cdot 4$	0.2	0	3	0	0
Scpt. 1-16		1.3	$0 \cdot 4$	$1 \cdot 3$			0.1	$8 \cdot 7$	0.4	$11 \cdot 3$	$0 \cdot 2$	0	2	0	0
17-30	2,5		$0 \cdot 2$	$10 \cdot 7$		$0 \cdot 1$		8.9	0.2	14.9	0.2	1	]	0	0
Oct. 1-16			$0 \cdot 1$	$6 \cdot 0$		0.4.		$6 \cdot 1$	0.1	$10 \cdot 9$	$0 \cdot 4$	0	2	0	2
$17.3 i$	$3 \cdot 3$		$0 \cdot 1$	$4 \cdot 1$		0.1		$9 \cdot 0$	0.2	14.8	$0 \cdot 2$	0	1	0	0
Nor. 1.16		$2 \cdot 2$	$0 \cdot 3$	$6 \cdot 9$		$0 \cdot 1$		$7 \cdot 4$	$0 \cdot 4$	$12 \cdot 0$	$0 \cdot 3$	0	0	0	0
17-30		7-1	$0 \cdot 1$		$3 \cdot 7$	$0 \cdot 3$		9.7	$0 \cdot 3$	8.8	$0 \cdot 4$	$\because$	0	0	0
Dec. 1.16		0.9	04		1.9		6.5	$10 \cdot 0$	0.4	$13 \cdot 7$	06	0	2	0	0
17.31		2:?	10.1	$2 \cdot 0$		$0 \cdot 1$		$7 \cdot 3$	$0 \cdot 1$	$7 \cdot 9$	$0 \cdot 2$	1	0	0	0
Totals ...	$20 \cdot 3$	51.7	0.4.7.4	150-5				$215 \cdot 7$	$8 \cdot 4$	\|308•5	6.6	1.	37	0	7
Mrens ...			$-0.3$				$0 \cdot 0$	9.0	0.4	12.3	$10 \cdot 3$				

TABLE XI,-Mean errors $E_{1}, E_{3}$ for 1923
karachi


Table XII.-Mean errors $E_{1}, E_{2}$ for 1924
karachi


T'ABLE XIII.— Mean errors $E_{1}^{\prime}, E_{2}$ for 1922
bombay


## bомвау



GEODETIC REPORT
TABLE XV.—Mean errors $E_{1}, E_{2}$ for 1924
bомbay

PERIOD 1024	MEAN ERRORS   $E_{1}$ is with regard to eign $\quad E_{0}$ is without regard to sign																
	$\mathrm{E}_{1}$								$\mathrm{E}_{1}$								
	H. W.    Time  Height   minuten $\\|$ reet				$\underbrace{\text { Time }}_{\text {mimutes }}$		$\frac{\text { Height }}{\text { teet }}$		H.  W.   Time     minutes		$\|$L. W.   $\|$Time   minuler   meti		$\underset{y}{3} \left\lvert\, \begin{aligned} & 1 \\ & \vdots \end{aligned}\right.$		3		
	+	-	+	-	+	-	+	-									
Jan. 1-15		8.4	0.3			7.1	0.5		$9 \cdot 6$	$0 \cdot 3$	8.9	0.5	1	1	0	4	
16-31		$5 \cdot 9$	$0 \cdot 1$			$7 \cdot 7$	$0 \cdot 4$		$7 \cdot 6$	$0 \cdot 2$	$9 \cdot 2$	$0 \cdot 4$	0	1	0	0	
Feb. 1-15		$12 \cdot 1$	0.0			$9 \cdot 1$	$0 \cdot 3$		$12 \cdot 1$	$0 \cdot 3$	$10 \cdot 3$	$0 \cdot 3$	1	1	0	0	
16-29		$4 \cdot 8$	$0 \cdot 0$		0.3		$0 \cdot 4$		$6 \cdot 4$	0.2	$4 \cdot 6$	$0 \cdot 4$	0	0	0	0	
Mar. 1-10̄		$6 \cdot 8$		$0 \cdot 2$	$0 \cdot 4$		$0 \cdot 0$		$8 \cdot 0$	$0 \cdot 3$	$4 \cdot 8$	$0 \cdot 3$	0	0	0	0	
16-31	$1 \cdot 4$			$0 \cdot 2$	$7 \cdot 7$			$0 \cdot 2$	$4 \cdot 7$	0.3	$8 \cdot 3$	0.2	0	0	0	0	
April 1-15		$6 \cdot 7$		$0 \cdot 2$		1.8		0.0	$7 \cdot 1$	0.4	$5 \cdot 1$	0.2	0	0	0	0	
16-30		$5 \cdot 6$		$0 \cdot 1$		$5 \cdot 7$		$0 \cdot 1$	$8 \cdot 0$	$0 \cdot 2$	$7 \cdot 1$	$0 \cdot 3$	0	0	0	0	
May 1-15		$7 \cdot 8$		$0 \cdot 2$		$2 \cdot 6$		$0 \cdot 0$	$8 \cdot 4$	$0 \cdot 2$	$6 \cdot 7$	$0 \cdot 2$	'	0	0	0	
16.31	1.5		$0 \cdot 1$			$2 \cdot 7$	0. 2		$6 \cdot 2$	$0 \cdot 3$	$5 \cdot 9$	$0 \cdot 3$	0	0	0	0	
.Inne 1-15		4.2		$0 \cdot 2$	$3 \cdot 6$			$0 \cdot 1$	$7 \cdot 9$	$0 \cdot 2$	$5 \cdot 7$	0.3	0	0	0	0	
16-30		$5 \cdot 3$		$0 \cdot 5$		$4 \cdot 9$		$0 \cdot 6$	$8 \cdot 1$	$0 \cdot 5$	$7 \cdot 1$	$0 \cdot 6$	0	0	1	0	
. $12.51-15$		1.4		$0 \cdot 3$	$4 \cdot 9$			$0 \cdot 1$	$5 \cdot 2$	$0 \cdot 3$	$7 \cdot 9$	0.	0	0	0	0	
16-31		2.:		0.1		$4 \cdot 3$		0. 2	6.1	0-2	$6 \cdot 3$	$0 \cdot 3$	0	0	0	0	
Aいこ. 1-i.	$0 \cdot 6$			$0 \cdot 3$	0.9			0.2	7.2	$0 \cdot 4$	8.1	$0 \cdot 3$	0	1	0	0	
(-.3)		$0 \cdot 7$	11.3		$2 \cdot 9$		$0 \cdot 1$		$9 \cdot 9$	$0 \cdot 3$	$7 \cdot 9$	$0 \cdot 3$	I	0	0	0	
- mit. 1-in	0.7				$6 \cdot 9$		$0 \cdot 1$		$6 \cdot 4$	16.2	$8 \cdot 0$	$0 \cdot 2$	0	0	0	0	
; 6 \% ${ }^{\text {a }}$		3 C :	$0 \cdot 0$		$4 \cdot 4$			0.0	$7 \cdot 4$	$0 \cdot 1$	$9 \cdot 0$	$0 \cdot 2$	0	1	0	0	
1) : . 1.1:	1.4		0		4.9		$0 \cdot 3$		42	$1 \cdot 12$	$6 \cdot 3$	$0 \cdot 3$	0	0	0	0	
10.: 1			11.2			$0 \cdot 4$	$0 \cdot 1$		$9 \cdot 5$	$0 \cdot 2$	$6 \cdot 5$	0.2	0	0	0	0	
$\therefore \mathrm{v}$ 1-1:		7.4	$0 \cdot 4$			$3 \cdot 3$	$0 \cdot 3$		$8 \cdot 5$	$0 \cdot 4$	$5 \cdot 7$	$0 \cdot 3$	0	"	0	0	
16-34		10.0	0.5			0.2	0.4		$10 \cdot 7$	$0 \cdot 5$	$7 \cdot 2$	$0 \cdot 4$	2	1)	0	0	
LIM. 1-1:		$6 \cdot 1$	$10 \cdot 1$			$5 \cdot 8$		0.0	$11 \cdot 6$	$0 \cdot 2$	$8 \cdot 4$	$0 \cdot 1$	3	0	0	0	
16.21		$10 \cdot 3$	$0 \cdot 1$			$6 \cdot 1$		0.1	$10 \cdot 4$	$0 \cdot 1$	$7 \cdot 3$	! $1 \cdot 2$	0	0	0	0	
Tutata	$5 \cdot 6$	119.9	2-4	2-3	36.8	62.0	: $3 \cdot 1$	$1 \cdot 6$	141.2	19.5	$172 \cdot 3$	$7 \cdot 0$	4	-	1	4	
Meave	$-4 \cdot 7$			0.	$-1 \cdot 1$		$+0 \cdot 1$		$8 \cdot 0$	0.3	7.2	$0 \cdot 3$					

$T A B L E X V I$. Mean errors $E_{1}, E_{2}$ for 1922
madras


MADRAS

madras


TABLE XIX.—Mean errors $E_{1}, E_{3}$ for 1922
KIDDEIPORE

$T A B L E X X$. Mean errors $E_{1}, E_{2}$ for 1923 EIDDERPORE


T'ABLE XXI.—Mean errors $E_{1}, E_{0}$ for 1.924 KIDDERPORE


TABLE XXII.-Mean errors $E_{1}, E_{2}$ for 1922
rangoon


TABLE XXIII.-Mean errors $\boldsymbol{E}_{1}, E_{2}$ for 1923
rangoon



TABLE XXV.-Mean crrors $E_{1}$, $E_{2}$ for 1922
moulmein


TABLE XXVI.—Mean errors $E_{1}, E_{0}$ for 1923
moulmein


TABLE XXVII.—Mean errors $E_{1}, E_{2}$ for 1924
MOULMEIN


Note-The observatory was discontinned from 1st November 1924.

TABLE XXVIII.—Mean errors $E_{1}, E_{2}$ for 1922
port blair


TABLE LXIX.-Mean errors $E_{1}, E_{2}$ for 1923
pont blair


TaBLE XXX.-Mean errors $E_{1}, E_{2}$, for 1924
PORT BLAIR


TABLE XXXI.-Mean errors $E_{1}, E_{2}$ for 1924
basselin

PERIOD   1926	MEAN ERRORS $E_{1}$ is with regerd to aign							$E_{2}$ is without regard to nign						
										$E_{2}$				
	$\text { Time }{ }^{\text {H. W. }} \text { Height }$			$\text { Time }{ }_{\text {Height }}$				$\underset{\text { Time }}{\text { H. Ht. }}$		$\operatorname{Time}_{\text {L. Wt. }}^{\text {Ht. }}$		涼		
	minutor			minutes		feet		minutes\|feet		minutes feet				
	+		+	+			1-							I
Jan. 1-15	25.2		1.0	9.9		0.0		25.2	1.0	$17 \cdot 7$	0.0	10	3	24.
16-31	19.5		$0 \cdot 5$	17.7		0.4		22.2	$0 \cdot 5$	19.8	0.4	12	7	11 1:
Feb. 1-15	$28 \cdot 4$		$0 \cdot 3$	11.6		0.6		28.4	$0 \cdot 6$	21.8	$0 \cdot 6$	8	7	1118
16-29	$19 \cdot 1$		$0 \cdot 3$	$19 \cdot 8$		0.8		30.9	$0 \cdot 4$	$20 \cdot 6$	0.8	4	6	5 9
Mar. 1-15	23.9		0.4	14.5		0.5		24.4	0.5	$25 \cdot 7$	0.5	6	8	1010
16-31	$9 \cdot 5$		$0 \cdot 3$	$8 \cdot 7$		0.6		13.7	0.4	$15 \cdot 6$	$0 \cdot 6$	2	4	$3{ }^{3}$
April 1-15	$11 \cdot 6$		0.5	$3 \cdot 5$		0.4		$15 \cdot 7$	0.5	$20 \cdot 2$	0.4	5	7	$11^{1}$
16.31)		$5 \cdot 2$	0.7		96	$0 \cdot 1$		15.4	0.7	$12 \cdot 1$	$0 \cdot 2$	4	1	13.1
May 1-15	$0 \cdot 2$		0.5		0.2	$0 \cdot 3$		12.8	$0 \cdot 5$	11.6	0.4	2	2	10 :
1631		17.8	0.9		240		0.4	23.5	0.9	$24 \cdot 0$	$0 \cdot 4$	9	10	24
June 1.15		$5 \cdot 3$	0.7	$7 \cdot 0$			0.1	$17 \cdot 4$	0.7	$12 \cdot 0$	$0 \cdot 2$	5	1	15 ?
16.30	$9 \cdot 1$		0.7		12.0		$1 \cdot 0$	$21 \cdot 0$	$0 \cdot 7$	14.3	1.0	7	1	$16^{18}$
July 1-15	$8 \cdot 3$		0.2	7.0			$0 \cdot 3$	$16 \cdot 2$		10.9	0	4		5
16.31										10	$0 \cdot 4$	4	1	
16.31		4.8	0.7	$6 \cdot 1$			29	11.5	$0 \cdot 7$	$15 \cdot 4$	$2 \cdot 9$	1	3	18 *
A'ig. 1-15		26.0	$0 \cdot 7$	15.9			$3 \cdot 5$	27.9	0.7	$21 \cdot 1$	$3 \cdot 5$	11	7	10 )
16-31		$3 \cdot 9$	0.4	$2 \cdot 6$										
- 16.31				$2 \cdot 6$			$1 \cdot 7$	$18 \cdot 2$	0.4	11.8	1.7	2	1	$8{ }^{3}$
sept. 1-15		13.3:	0.3		0.7		$2 \cdot 0$	$22 \cdot 8$	$0 \cdot 3$	$19 \cdot 2$	2.0	8	4	0 \%
15-30		$0 \cdot 5$	08		8.7		$0 \cdot 3$	$10 \cdot 0$	0.8					18 \%
							$0 \cdot 3$	$10 \cdot 0$	0.8	$11 \cdot 1$	$0 \cdot 6$	1	1	18
,			$0 \cdot 0$		$22 \cdot 6$		$1 \cdot 2$	$18 \cdot 8$	$0 \cdot 3$	22.8	1.2	8	8	11
10.31		12.7	0.1		18.5		0.5	$16 \cdot 2$	0.4	21	0.7	1	9	818
Nov. 1-15		$18 \cdot 1$	0.8										${ }^{\circ}$	15
10 30			0.8		31.4		0.7	$18 \cdot 3$	0.8	31.4	0.7	5	15	15.15
16.30		14.1	$1 \cdot 1$		23.3		$1 \cdot 1$	21.2	$1 \cdot 1$	23.9	$1 \cdot 1$	9	6	$29 \%$
Dec. 1-15		$3 \cdot 4$	$1 \cdot 1$		$19 \cdot 6$		$0 \cdot 6$	11.2	$1 \cdot 1$	$21 \cdot 0$	0.6	3	$8$	2811
16-31	4.0		1.0		$4 \cdot 7$		$0 \cdot 4$	15.6	1.0	14.5	0.6	$\cdots$	-	317
Totals...	158.8	$140 \cdot 1$	1.5122 .5	124.3	$175 \cdot 3$	$3 \cdot 7$		$448 \cdot 5$	15.8					
Mfans ...			0.6	--					$15 \cdot 8$	$439 \cdot 8$	$21 \cdot 3$			
							0.5	18.7	0.6	18.3	0.9			

BHAVNAGAR

bhavnagar


TABLE XXXIV.-Mean errors $E_{1}, E_{2}$ for 1924
bhavnagar

PERIOD   1924	MEAN ERROHS   $\mathbf{E}_{1}$ is with regard to sign							$\mathrm{F}_{2}$ is without regard to sign							
										$\mathrm{E}_{2}$					
	Time H. W		Heiz bt	Time $\quad$ L.W.		Height		$\underset{\text { The }}{\mathrm{H} .} \mathrm{W} .$		$\underset{\text { Time }}{\mathrm{L}_{\mathrm{H}_{1} .}}$		3	$\underset{i}{i}$	\#	$\xrightarrow{-1}$
	minutes					feet		minutes	feet	miantes	reet				
Jan, 1-15	+	- $3 \cdot 7$	$+1 \begin{gathered}- \\ 0.2\end{gathered}$		- 1.9	+	-	4.5	0.4	$5 \cdot 5$	0.5	0	0	0	0
16-31		0.9	0.3		$1 \cdot 1$	0.1		5.1	0.5	4.4	$0 \cdot 5$	0	0	0	0
Feb. 1-15		$0 \cdot 1$	0.1	$1 \cdot 3$		$0 \cdot 1$		5.9	0.4	$4 \cdot 8$	0-4	0	0	0	0
16-29	$1 \cdot 8$		0.2		0.8		$0 \cdot 1$	5.1	$0 \cdot 5$	4.9	0.5	0	0	1	0
Маг. 1.15		$2 \cdot 7$	$0 \cdot 1$		$0 \cdot 7$		$0 \cdot 0$	$5 \cdot 2$	0.5	4.2	0.4	0	0	0	0
16.31		$1 \cdot 3$	$0 \cdot 1$	1.3			$0 \cdot 1$	4.9	0.4	$3 \cdot 8$	$0 \cdot 4$	0	0	1	0
April 1-15	$0 \cdot 3$		02	$2 \cdot 5$		$0 \cdot 1$		5.1	$0 \cdot 5$	4.8	0.5	0	0	1	0
16.30	0.2		0.0		0.0		$0 \cdot 2$	3.9	$0 \cdot 4$	$5 \cdot 5$	$0 \cdot 4$	0	0	0	0
May 1.15	$2 \cdot 3$		0.2		$0 \cdot 0$		$0 \cdot 2$	$4 \cdot 9$	$0 \cdot 5$	4.4	$0 \cdot 4$	0	0	0	0
16.31		$1 \cdot 1$	$0 \cdot 0$	0.2			$0 \cdot 1$	$4 \cdot 9$	$0 \cdot 5$	$5 \cdot 6$	$0 \cdot 4$	0	0	0	0
June 1-15		$0 \cdot 9$	$0 \cdot 0$	1.0		0.1		3.7	$0 \cdot 4$	4.9	0.5	0	0	0	0
16-30		2.8	$0 \cdot 1$	1.1			0.3	6.1	0.3	4.4,	$0 \cdot 6$	0	0	0	1
Joly 1-15	0.6		$0 \cdot 1$	0.5		$0 \cdot 2$		3.9	$0 \cdot 4$	$5 \cdot 1$	$0 \cdot 5$	0	0	0	1
16-31		$1 \cdot 9$	$0 \cdot 1$		$0 \cdot 7$	$0 \cdot 1$		5.1	$0 \cdot 4$	$4 \cdot 4$	0.4	0	0	0	0
Ang. 1-15	$1 \cdot 0$		$0 \cdot 0$	$1 \cdot 1$			$0 \cdot 1$	$3 \cdot 8$	0.4	$5 \cdot 1$	0.4	0	0	0	0
16.31		$0 \cdot 5$	$0 \cdot 1$		1.0	0.1		4.5	$0 \cdot 4$	4.6	$0 \cdot 4$	0	0	1	0
Sept. 1-15	1.9		0.1		$0 \cdot 0$		0.2	3'9	$0 \cdot 4$	$4 \cdot 0$	0.3	0	0	0	0
16.30		0.3	0.0		$0 \cdot 1$		00	$5 \cdot 1$	0.3	$4 \cdot 9$	$0 \cdot 3$	0	0	0	0
Oct. 1-15		$0 \cdot 3$	0.1		$1 \cdot 8$		$0 \cdot 2$	$4 \cdot 8$	$0 \cdot 4$	$4 \cdot 1$	$0 \cdot 4$	0	0	0	0
16-31	$0 \cdot 3$		$0 \cdot 1$	0.5			0.1	$4 \cdot 1$	0.3	$4 \cdot 9$	$0 \cdot 4$	0	0	0	0
Nov. 1.15		$3 \cdot 9$	$0 \cdot 0$		$2 \cdot 9$		$0 \cdot 0$	$5 \cdot 6$	0.5	4.9	$0 \cdot 5$	0	0	0	0
16-30		$2 \cdot 1$	0.2		0.9	0.1		4.5	$0 \cdot 4$	$4 \cdot 3$	0.5	0	0	0	0
Dec. 1-15	03		0.0	$2 \cdot 7$		$0 \cdot 2$		$2 \cdot 9$	$0 \cdot 4$	$4 \cdot 7$	$0 \cdot 1$	0	0	0	0
16.31		$1 \cdot 1$	$0 \cdot 1$		$2 \cdot 2$	$0 \cdot 2$		$4 \cdot 6$	0.5	$5 \cdot 2$	0.4	0	0	2	0
Totala...	$8 \cdot 1$	23.1	1.4 1.0	$12 \cdot 2$	$13 \cdot f$	$1 \cdot 3$	1.7	112.1	10.1	$113 \cdot 4$	$10 \cdot 4$	0	0	6	2
Means ...		$0 \cdot 6$	$0 \cdot 0$		$\cdot 1$		$0 \cdot 0$	$4 \cdot 7$	0.4	$4 \cdot 7$	$0 \cdot 4$				

TABLE XXXV.—Mean errors $E_{1}, E_{2}$ for 1922
Chittagong


TABLE XXXVL.—Mean errors $E_{1}, E_{2}$ for 1923
CHITTAGONG


## TABLE XXXVII.-Mean errors $E_{1}$, $E_{9}$ for 1924

CHITTAGONG


## TABLE XXXVIII.-Mean errors $E_{1}, E_{2}$ for 1922 <br> AKYab



TABLE XXXIX.—Mean errors $E_{1}, E_{2}$ for 1923
AKYAB


TABLE XL.- Mean errors $E_{1}$, $E_{2}$ for 1924
AKYAB

(iii) Observatory Section
51. Meteorological observations were continued as usual, except thad Meteorological observations.
52.

Seismograph observations. the hour of observation has been changed from 14 hours to 10 hours from February 1923.

The Omori Seismograph was in operation throughout the peniw 1922-25. Details of the earthquakes recorded are tabulated below, and the distances from Simla derived from the record of Simla seismograph: are given where available.

Particulars of earthquakes recorded are sent to Professor H. H. Turner, f.r.s., University Observatory, Oxford, for inclusion in the British Association bulletins.

Earthquakes recorded at Dehra Dün during the years 1922-25

No.	Month \& date	Time of beginning		Duration	Distance of Epicentre		Remarks
		Dehra	Simla		Dehra	Simla	
		hr m	hr m	minutes	miles	miles	
1	15-10-1922	5-25	5-31	44	4000	2000	Moderate
2	17-10-1922	21-36	21-35	26	910	1000	"
3	11-11-1922	10-22 $\frac{1}{2}$	$10 \cdot 23$	...	34.30	Antipodes	Violent
4	6-12-1922	19.281	19-27	43	500	300	Great
5	17-12-1922	6-24t	...	30	370	$\cdots$	Moderate
6	3-2-1923	10-49	...	80	4500	...	Great
7	4-2-1923	21-43	...	180	2200	...	Violent
8	3-3.1923	22-29	22-28	66	3400	3500	Moderate
9	23-5-1923	7-21	$\ldots$	73	1600	...	Moderate
10	23-6-1923	12-18	$\ldots$	81	1600	...	Great
11	14-7-1923	16-52	$\ldots$	60	4500	...	„
12	1-9-1923	8-371	...	120	3200	..	"
13	2-9-1923	8-27	$\ldots$	76	4500	...	"
14	10-9.1923	3-37	$\ldots$	60	1100	$\ldots$	"
15	23-9.1923	2. 21	...	...	1500	$\ldots$	,
16	1-10-1423	4-42	$\cdots$	15	200	...	Slight

Earthquakes recorded at Dehra Dün during the years 1922-25-(Concld.)

No.	Month \& date	Time of begiuning		Daration	Distance of Epicentre		Remarks
		Debra	Simla		Debra	Simla	
		hr m	hr m	minutes	miles	miles	
17	$1 \cdot 10 \cdot 1923$	13-47t	13-48	30	500	400	Moderate
18	2-10-1923	16-55	...	19	250	$\cdots$	Slight
19	7-10-1923	9-08	...	...	1800	...	Moderate
20	15-1-1924	02-30	2-30	78	3800	3500	"
21	14-4-1924	21-59	$\cdots$	196	1600	. ${ }^{\prime}$	Great
22	26-6-1924	07-26	...	139	1800	...	Moderate
23	7-7.1924	0.3	0-4	48	600	600	"
24	12-7-1924	01-16	$\ldots$	100	450	...	Violent
25	30-8.1924	8-44	8-44	69	3300	3500	Considerable
26	13-9.1924	20-10	20-102	73	2800	2100	Moderate
27	16-9-1924	08.09	8-8	30	700	650	"
28	17-9-1924	15-5\%	15-53	16	650	500	Slight
29	9. $10 \cdot 1924$	02-06	2-6	37	700	700	Moderate
30	13-10-1924	21-50	21-49.5	34	200	300	Moderate
31	18-1-1925	17-46	17-46	61	4600	4000	Moderate
32	16-3-1925	$20 \cdot 14$	20-17	43	1700	1500	Moderate
33	19-8-1925	17-47	$\cdots$	70	5500	$\cdots$	Moderate
34	5-9-192\%	22-36	$\ldots$	16	700	...	Slight
35	9-9-1925	12-56	...	$3 \frac{1}{2}$	140	$\cdots$	Slight
36	24-9.1925	10-15	..'	30	1800	$\cdots$	Slight
37	29-9.1925	3-17	...	4	350	...	Very slight

Photographs of the sun were taken in 1922-23 on 306 days; for the remaining days of the year no photograph could be taken as the sun was obscured by clouds. In 1923-24, photographs were taken only on 274 days, for 43 days the dome was under repair and for the remaining days the sun was not visible. In 1924-25, photographs were taken on 243 days from 1-10-24 to $30-6-25$ when work was discontinued. For 30 days no photographs were taken as the sun was invisible.
(Contd.)
53.

Solar
photography,

After correspondence with the Director of the Science Museum, South Kensington, London, it was decided to discontinue the taking of solar photographs at Dehra Dūn with effect from Jst July 1925.

The work was originally taken up at the request of Mr. Norman Lockyer (afterwards Sir Norman Lockyer). The original object was a comparative study of terrestrial and solar spectra, the incidence of sun spots, their connection with magnetic storms and rainfall (Maldrum theory) and other terrestrial phenomena.

Observations were begun in 1878 under Mr. Hennessey's direction, Mr. C. Meins being appointed solar photographer by the Secretary of State for India on a salary of Rs. $250 /-$ per mensem which was paid by the Imperial Department of Industry, Science and Art. On Mr. Meins' death, Mr. L. A. Clarke, Surveyor 2nd grade, was appointed solar photographer and the whole expense of maintenance devolved on the Survey of India.

The photographs were first taken in the Walker Observatory with a small instrument and the results were only 4 inches in diameter. An enlarging contrivance was afterwards fitted, by means of which photos of eight-inch diameter were obtained. A sun shine recorder was also set up in 1880 and actinometer observations were occasionally taken. In 1882, a larger telescope was received from England for taking photos 12 inches in diameter and this was erected in the Hennessey Observatory which was completed in 1883 . The 8 -inch pictures were utilised for measuring the areas of spots and faculae, while the 12 -inch ones served for studying the mottling or granular appearance of the photosphere and the structure of the penumbra of the spots. Solar photographs were taken on every day of the year when the sun was visible and the negatives were sent to England every week. These photographs supplemented those taken at Greenwich and were utilised by the Solar Physios Committee, South Kensington, and the Astronomer Royal for obtaining the information and measurements they required.

As solar photography has little direct bearing on any of the activi. ties of the Survey of India, and its upkeep necessitated a considerable amount of expenditure which could be more profitably spent on work in which the Surver of India is more directly interested, and moreover, as a much better equipperl observatory has been established in the meantime at Kodaikinal, it was decided to discontinue the work with effect from 30th June 192i.

The part. which the Dehra Dūn solar photo-observatory has played in the researches of solar physics may be gathered from the letter of Colonel H. G. Lyons, r.e., r.r.s., Director, Science Museum, South Kensington, quoted below.
"They (the Astronomer Royal and the Director of Sola: Physics Observatory) both recret that it should be necessary to discontinue the invaluable contribution to solar physies which the Survey of India has made for the past 17 vears. The work which was carried out at Dehra Dūn was of the greatest value to the Solar Physics Observatory while it
was at South Kensington, and astronomical science is very deeply indebted to the Survey of India for the excellent scientific material it has
54.
(Contd.) contributed to the study of its problems during almost half a century."

Solar photographs taken at Dehra Dün during the years 1922-24

Month		No. of days	$8^{\prime \prime}$ Negatives		No. of days on which sun was invisible
			Good	Bad	
October 1922	..	31	57	3	nil
November	...	30	56	4	"
December	$\ldots$	26	45	3	5 days
January 1923	...	25	44.	6	6 days
February	...	18	30	2	10 days
March	...	27	47	2	4 days
April	...	30	54	4	nil
May	...	30	56	$\underline{2}$	1 day
June	.	29	47	2	1 day
July	...	22	33	1	9 days
August	...	17	23	3	$1 \pm$ days
September	...	21	34.	8	9 dars
October	-	25	44	3	6 clays
November	...	30	55	6	nil
December	...	27	48	4	4 clays
January 1924.	$\cdots$	25	43	5	6 dass
February	...	23	40	2	6 days
March	...	29	49	111	2 days
*April	...	7	12	2	nil
* May	**	9	16	1	"
Juno	.	28	46	4	2 days
July	...	23	30	2	8 days
Augnst,	...	24	30	5	7 days
September	..'	2.4	39	3	6 days
'I'ntal	...	580	978	77	106 days

[^6]54. (Contd.)

Month		No. of days	8' Negatives		No. of days on which sun was invisible
			Good	Bad	
October 1924	$\ldots$	30	55	3	1 day
November	...	29	52	3	1 day
Docember	$\cdots$	24	40	5	7 days
Jannary 1905	..	26	47	4	5 days
February	...	24	40	4	4 days
March	...	31	52	6	nil
April	..	30	55	5	,
May	...	27	49	3	4 days
June	...	22	33	1	8 days
Total	...	243	423	34	30 days

## 55. <br> Time <br> observations.

For many years time observations have been made regularly in th Walker Observatory, the time service being used for magnetic obest vations and for general purposes. One of the two reversible transitstr Messrs. Troughton and Simms obtained for the Indo-European longitud ares of $189 \pm-95-96$ have been employed. Special observations for loogi tude have been made on two occasions.
(1) In 1913-14, work was done in connection with the De Filipi Expedition to the Kara-koram, wireless siguals being received fros Lahore by members of the expedition and simultaneously at Dehra Duir: whereby the longitude differences were deduced.
( $\sim$ ) In 1921, wirelese time signals were received from Paris, Eill: Tower, and a direct value of the Dehra Dūn longitude derived, as follors it refers to the meridian pillar of transit instrument of the Walke Observatory. The Haig Observatory meridian is $7 \cdot 46$ seconds furthert the east.
5 hrs . 12 mins. $11 \cdot 220$ seconds (weighted mean
5 successful nights) by Dr. Hunter 5 hrs. 12 mins. $11 \cdot 383$ seconds (weighted mean

2 successful nights) by Major Mason 5 hrs. 12 mins. $11 \cdot 267$ seconds by Sir Sidney Burrard, and Sir Gera: Ienox-Conyngham in 1894-96 by ordinary telegraph by land and sa The weighted mean, Hunter, Mason, gives an identical result.
56. It had been felt with increasing force that the personal equation ${ }^{\prime}$ tions. The transit instrument was not fitted with an impersond micrometer, nowadays regarded as essential. Further the astronomi'
clocks, though excellent for their period, were old and of much lower precision than others now available.

Accordingly after certain enquiries, a Riefler clock was indented for in August 1920. The Astronomer Royal for Scotland, Professor R.A. Sampson, f.r.s., an eminent authority on such matters, was invited to test this clock and report on its behaviour. This he most generously undertook and the clock was set up at the Royal Observatory, Edinburgh, in April 1922 and kept under observation for 11 months. A statement of its rate during this period was furnished by Professor Sampson; and the clock was sent out to India, arriving at Dehra Dūn in August 1923. Special housing was necessary for this Riefler clock : for it must be kept in a room in which the temperature is controlled. In April 1924 an inner cell was built in the annular space in the base of the Hennessey Observatory : and this was enclosed in turn. The clock was erected in August 192t. The temperature in the inner cell is controlled by a thermostat which actuates alternatively a radiator or a fan. When the fan is in action, air is drawn in from the outer cell where temperature should be maintained somewhat lower than the perennially fixed temperature of the inner cell ( $80^{\circ} \mathrm{F}$.). The outer cell is served by an excavating fan which during the hot weather draws out the air, and thereby causes the inflow of cold air from the outside of the building. This fan comes into action automatically when the outer temperature sinks below a certain value, provided the cell temperature is above another fixed value. Two thermostats are employed for this purpose This latter arrangement was not completed in the period under report, and some variations in the inner cell temperature have occurred. The clock rate and temperature of the clock cell are tabulated below :-

Date   1925	Cell tempera. ture	Clock rate	Pressure	Clock temperature	Remarks
April	F 。			C。	Pressure decreased to 590 ,, increased to 582
	75.5	-1).16	607	$24 \cdot 0$	
	$7.5 \cdot 8$	$-0.36$	627	$24 \cdot 1$	
	$77 \cdot 3$	$+0.01$	604	$25 \cdot 0$	
May $\begin{array}{r}30 \\ \hline\end{array}$	79.6	$+0.14$	597	$26 \cdot 0$	
May	78.5	$+0.03$	603	25.5	Pressure decreased to 590 ) Artificial cooling from ; 21st to 27th Mar 1925
	78.4 77.9	-0.01 +0.03	607 591	25.0 25.8	
	$82 \cdot 0$	+0.01	596	27.8	
June $\begin{array}{ll} \\ & 11 \\ & 2 \\ & 2\end{array}$	St.0	+0.09	598	28.5	$120$   Wiring and electrical comertions for ther-
	83.9	+0.12	599	28.5	
	82.5 81.7	+0.08 +0.10	599	27.8	
inl5	R1. R1.	+0.10 +0.16	600 698	$27 \cdot 3$ $27 \cdot 1$	$\int$ mostats in hand
	80.8	+0.16 +0.19	597	26.9	
ting.	$8.3 \cdot 1$	+0.18	601	28.4	
	$80 \cdot 3$	+ 0.23	$59 \%$	26.6	
Scpt.19                     11   28	81.1	+0.19	697	$27 \cdot 3$	
	81.6	$+0.20$	598	$27 \cdot 3$	
	81.1	$+0 \cdot 24$.	597	$27 \cdot 1$	
	$80 \cdot 8$	$+0.63$	$5!17$	26.9	

57. 

Impersonal micrometers.
58.

International longitude project.
59.

Hunter time observatory.

Impersonal micrometers were indented for, for the two revesili transits in 19:4. 'They were received in 1925.

In recent years international action has been taken to secure simultaneous determination of longitude ares encircling the earth, bry greatly extended facilities provided by wireless telegraphy. Genm Ferrié put forward a tentative scheme at the meeting of the Ine national Union of Geodesy and Geophysics at Rome in 1922. A mind Commission was formed from members of this Union and that of International Union of Astronomy, Dr. Hunter being one of the mee bers of this commission. The matter was then reviewed and diselesat the geodetic meeting at Madrid in 1924, and at the astronou meeting at Cambridge in 1925; and at the latter place a definite dret sion to execute the work in October and November 1926 was arriveds Dehra Dūn is to be one of the principal receiving stations. Tir signals will be emitted from Bordeaux, Honolulu, Saigon and Annapi (Washington). They will be received and timed at the participatiog stations. This project has made the accurate determination and mat tenance of time at Dehra Inūn of primary importance. It would nothux been feasible without the recent instrumental additions briefly alluw to above.

The transit room in the Walker Observatory was of old des: and not really satisfactory for modern high class time determinali. In other old established observatories, unexplained discrepancies time determination have been brought to light by the reception, several of them, of indentical wireless time signals. A possible soll of error is lateral refraction. In the Walker Observatory there is 1 large dome of the solar telescope close by on the east ; further, the ru is unduly lofty. It was accordingly decided to erect a smaller t better placed time observatory. In the design of this, great importar was attached to complete symmetry and also to freedom frus disturbance by large trees. A site was selected on the meridian of 4 Haig Observatory and midway between that and the Burrard Obr vatory : the new observatory begun in 1924 was completed in 1925.

## Magnetic Observations

For the purpose of comparison of instruments complete sets. magnetic observations were taken at the Dehra Dün, Toungoo, Alik: (Bombay) and Kodaikinal observatories, the two latter being under ${ }^{\text {: }}$ control of the Meteorological Department. Double sets of observatio? of dip, declination and horizontal force were taken during the field seas: at the following repeat stations :-Quetta, Karāchi, Bina, Dibrugnt Barrackpore, Waltair and Moulmein. The first 6 stations were at visited during the field season 1921-22 in order to supplement to 5 -yearly observations at all the repeat stations in India for obtainite accurate vaiucs of the average annual changes in the magnctic element


Hunter Observatory.

Plonto.-engraved \& printed at the Offlces of the Survey of India, Calcutta, 1927.

The headquarters staff of the party was employed during the field season on the reduction of observations to the epochs $1909 \cdot 0$ and $1920 \cdot 0$. The observations of Dr. de Graaff Hunter taken in 1922 at Kew Observatory and Val Joyeux with Magnetometer No. 10 were now available, and afforded a means of reducing the results of the magnetic observations in India in terms of the British standard at Kew. The party also carried out the inspection of the tidal observatories at Bombay (Apollo Bandar), Karächi, Madras, Kidderpore (Calcutta), Rangoon and Monlmein during the field season.

The computations of the observations taken at some of the repeat stations and at observatories for the comparisons of instruments were completed.

The final reduction of the observations at the observatories, in the field and at repeat stations to the epochs $1909 \cdot 0$ and $1920 \cdot 0$ was completed, and the tables of results with the necessary maps were sent to the press for publication in the Records of the Survey of India, Volume XIX (Magnetic Survey).

In the beginning of 1923, it was decided for reasons of economy to curtail magnetic work and accordingly the party and the magnetic observatory at Toungoo were closed in October 1923. The magnetic observatory at Dehra Dūn was the only observatory kept going, and was transferred to the control of the Officer in charge, Computing and Tidal Party.

Except for some stoppages in the driving clock of the H. F. and declination magnetographs during the months June-September 1923, the magnetographs worked very satisfactorily and required hardly any adjustments. The clock was removed, cleaned and repaired on two different occasions during the above period.

The observatory was not inundated during the year though there was percolation of some water into the passage on 4.th September 1923, which was promptly baled out.

The table below gives the mean monthly values of the magnetic collimation, the distribution constants $\mathbf{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the accepted value of $\log \left(1+\frac{P}{1^{8}}+\frac{Q}{r^{4}}\right)^{-1}$ The values of the moment " $m$ " were derived from vibration observations taken with the chronograph.

Mean values of the constants of Magnet No. 17 at Dehra Dün in $192 \pi$

Months		Declination constants   Mean magnetic collimation	H. F. Constants				
			Distribution factors			Mean values of m	
			$\mathrm{P}_{1.2}$	$\mathrm{P}_{2.3}$	$\left(1+\frac{\left.\mathbf{P}_{\mathbf{r}^{2}}+{ }_{\mathbf{r}^{\mathbf{4}}}^{\mathrm{Q}}\right)^{-1} \mid}{}\right.$	Monthly means	$\left\lvert\, \begin{gathered}\text { Acceptreien } \\ \text { IT }\end{gathered}\right.$
January	$\ldots$	- 658	$5 \cdot 91$	6.69		806.92	$)$
February	..	-7 (12	$5 \cdot 98$	6.70		-96	
March	$\ldots$	$-707$	$5 \cdot 99$	$6 \cdot 90$		85	¢806:9
April	...	$-704$	$5 \cdot 94$	$6 \cdot 61$	\%	. 95	
May	$\ldots$	$-700$	$5 \cdot 98$	6.70	$\stackrel{0}{6}$	-67	
June	...	$-707$	$5 \cdot 99$	$6 \cdot 61$	O	. 33	
July	$\cdots$	$-703$	6. 10	$6 \cdot 70$	$\pm$	42	
Angust	..	$-701$	$6 \cdot 20$	$6 \cdot 66$	$\stackrel{\square}{4}$	- 33	
September	$\ldots$	-659	$6 \cdot 24$	6.65	$\stackrel{8}{8}$	. 30	$\}^{806} \cdot 4$.
October	$\ldots$	$-706$	6.09	$7 \cdot 00$	$\dot{\square}$	-34	
November	$\ldots$	- 658	$6 \cdot 07$	6.85		-64	
December	...	$-651$	$6 \cdot 15$	681		$\cdot 77$	j

64. 

Mean base line values.

The table below gives the mean monthly observed and accepfed values of the declination and horizontal force base lines; the acceptit values have been used to compute the values of the elements for 1922.

Base line values of magnetographs at Dehra Dün in 1922

Months		Declination		Horizontal Force		Litmanks
		Mean value of base line	Base line accepted	Mean value of base line	Base line accepted	
		- ,	- ,	C. G. S.	C. G. S.	
Jannary	..	148	14.8	326616	32666	
February	...	15.0	$15 \cdot 0$	- 32662	- 32662	
March	...	$15 \cdot 3$	$15 \cdot 3$	-32664	- 32664	
April		$15 \cdot 2(a)$	(a) $1 \quad 5 \cdot 2$	-32667	. 32667	(a) to 21 st Aptl
Aprit		$15 \cdot 7(b$	(b) $1 \quad 5 \cdot 7$	-32667	-32667	b) to 8th Mat
May	.	$16.4(c)$	(c) $1 \quad 6 \cdot 4$	- 32656	- 32656	(c) from, 9 th Mer
Itone	.	16.4	16.4	- 32657	- 32655	
July		$15 \cdot 8$	$15 \cdot 8$	-32650	- 32650	
Angust	$\cdots$	$16 \cdot 0$	$16 \cdot 0$	- 32652	- 32652	
September	$\ldots$	162	$16 \cdot 2$	- 32650	-32650	
October		16.6	16.6	- 32649	- 32649	
November	...	$16 \cdot 1$	$16 \cdot 1$	-32643	- 32643	
December	...	$1 \quad 5 \cdot 7$	$15 \cdot 7$	-32637	- 32637	

The mean scale values for 19:2 for an ordinate of $1 / 25$ inch are :-
65.

Mean sca/e values and temperature range.

The mean temperature for the year was $27^{\circ} \cdot 0 \mathrm{C}$., with maximum and minimum monthly values of $27^{\circ} \cdot 3 \mathrm{C}$. and $26^{\circ} \cdot 7 \mathrm{C}$. The temperature of reduction is $27^{\circ} \cdot 0 \mathrm{C}$.

The following table shows the monthly mean values of the magnetic elements for 1921 and 1922 and the annual changes for that period.

Annual changes at Dehra Dün in 1921-1922

Months	Horizontal Force -32000 C.G.S. +			Decliuation   E. $1^{\circ}+$			$\stackrel{\text { Dip }}{\text { N. }} 45^{\circ}+$			Vertical Force -32000 C.G.S. +		
	1921	19:2	Annual change	1921	1922	Annual change	1921	1922	Annual chnoge	1921	1922	Annual change
	$\gamma$	$\gamma$	$\boldsymbol{\gamma}$					,		$\boldsymbol{\gamma}$	$\gamma$	$\gamma$
January	946	936	$-10$	$48 \cdot 9$	14.8	$-4 \cdot 1$	$2 \cdot 3$	$6 \cdot 6$	+4•3	990	1062	+72
February	953	933	-20	$48 \cdot 6$	44-5	$-4 \cdot 1$	$2 \cdot 2$	$6 \cdot 9$	$+4 \cdot 7$	995	1006	+71
March	956	935	-21	$48 \cdot 3$	44.1	$-3 \cdot 9$	$2 \cdot 6$	$7 \cdot 4$	$+4 \cdot 8$	1007	1076	+69
April	960	939	-21	$47 \cdot 7$	$43 \cdot 9$	$-3 \cdot 8$	$2 \cdot 9$	$7 \cdot 6$	$+4 \cdot 7$	1016	1084	+68
May	938	931	$-7$	$47 \cdot 5$	$44 \cdot 1$	$-3 \cdot 4$	$4 \cdot 4$	7-6	$+3 \cdot 2$	1022	1076	$+54$
June	945	936	- 9	$47 \cdot 2$	$43 \cdot 8$	$-3 \cdot 4$	$4 \cdot 5$	$7 \cdot 8$	$+3 \cdot 3$	1030	1086	+ 56
July	954	926	-28	$46 \cdot 7$	$43 \cdot 0$	$-3 \cdot 7$	4.4	8.6	$+4 \cdot 2$	1039	1092	+ 63
Angust	942	922	-20	$46 \cdot 4$	42.9	$-3 \cdot 5$	$5 \cdot 0$	9•5	$+4 \cdot 5$	1037	1105	+68
September	940	917	-23	$46 \cdot 1$	$43 \cdot 5$	$-3 \cdot 6$	5•3	9•7	$+4 \cdot 4$	1041	1103	+62
October	936	916	- 20	$46 \cdot 1$	$42 \cdot 5$	$-3 \cdot 6$	5.5	$10 \cdot 4$	$+4.9$	1042	1115	$+73$
November	935	919	- 16	$45 \cdot 8$	$4.1 \cdot 5$	$-4 \cdot 3$	$5 \cdot 6$	$10 \cdot 1$	$+4 \cdot 5$	1042	1113	+ 71
December	929	915	-14	$45 \cdot 4$	40-9	$-4 \cdot 5$	$6 \cdot 1$	$10 \cdot 6$	$+4 \cdot 5$	1046	1118	+ 72
Means	945	927	- 17	4.7.1 ${ }^{\text {d }}$	\| $4.3 \cdot 2$	$-3 \cdot 8$	$4 \cdot 2$	$8 \cdot 6$	$+4 \cdot 3$	1026	1091	+66

The magnetographs worked very satisfactorily during the year under report and there were only two adjustments for light in the vertical and one in the horizontal force magnetographs during this period.

Slight repairs to the magnetograph house were carried out on the 9th and 13th July 1923.
67.

Toungoo magnetic Observatory 1922-23.
68.

Man values of the declination and H.F. constants.

The table below gives the moun monthly values of the magnetir collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the provisional value of the factor $\log \left(1+\frac{P}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1}$. The values of the moment " $m$ " were derived from vibration observalions taken with the eye.

Mean ralues of the constants of Magnet No. 20 at Toungoo in 1922

69. The table below gives the mean monthly observed and accepted base line values of the declination and horizontal force magnetographs: the accepted values have been used to compute the values of these elements for 1922. The horizontal force base line values lave been derived from $H$ as determined with the moment of inertia obtained for Magnet No. 20 at Tonngoo in February 1921 and the provisional value of the distribution factor $\log \left(1+\frac{\mathbf{P}}{\mathbf{r}^{2}}+\frac{Q}{\mathbf{r}^{4}}\right)^{-1}$ mentioned in the previous table.

Base line values of magnetoyraphs at Toungoo in 1922


The mean scale values for 1922 for an ordinate of $1 / 25$ inch are :-

Horizontal Force	$\mathfrak{j} \cdot 22$ gammas.
Declination	$1 \cdot 04$ mintues.
Vertical Force	$5 \cdot 88$ gammas.

The mean temperature for the year was $89^{\circ} \cdot 1$ Fahr. with maximum and minimun monthly values of $90^{\circ} \cdot 5 \mathrm{Fahr}$. and $88^{\circ} \cdot 0 \mathrm{Fahr}$. The temperature of recluction is $89^{\circ} \cdot 0 \mathrm{Fahr}$.

The table below shows the monthly mean valucs of the magnetic elements for 1921 and 1922 and the annual changes for that period. The annual changes for horizontal force are deduced from the values of H corrected for the moment of inertia and distribution factor as
71.

Mean monthly values and annual changes. referred to in para 68.

Annual changes at Toungoo in 1921-22

Months		Horizontal Force -39000 C.G.S. +			Declination W. $0^{\circ}+$			$\stackrel{\text { Dip }}{\text { N. }} \mathbf{2 3}^{\circ}+$			Vertical Force   - 16000 C.G.S		
		1921	1922	Annual change	1921	1922	Annual change	1921	1022	Annual change	1921	1922	${ }^{\text {dinma }}$ chang
		$\boldsymbol{\gamma}$	$\gamma$	$\gamma$	,		,		,	,	$\boldsymbol{\gamma}$	$\gamma$	$\gamma$
January	...	125	131	+ 6	$\because 5 \cdot 6$	6291	$+3 \cdot 5$	$7 \cdot 2$	7-4.	+0.2	704	709	$+i$
February	...	139	137	- 2	$25 \cdot 6$	68-8	$+3 \cdot 2$	70	; 75	+0.5	707	713	+ ${ }^{\text {a }}$
March	...	142	138	- 4	$25 \cdot 4$	$428 \cdot 9$	$+3 \cdot 5$	$6 \cdot 8$	$7 \cdot 5$	$+0.7$	706	714	$+8$
A pril	...	143	150	$+7$	$25 \cdot 7$	$729 \cdot 0$	+ $3 \cdot 3$	$6 \cdot 8$	$7 \cdot 2$	$+0.4$	707	716	$+:$
May	...	117	162	$+45$	$26 \cdot 0$	$29 \cdot 3$	$+3 \cdot 3$	$6 \cdot 4$	$7 \cdot 4$	+ $3 \cdot 0$	690	723	+39
June	...	122	165	$+43$	$26 \cdot 4$	$4 \cdot 29 \cdot 4$	$+3 \cdot 0$	$6 \cdot 7$	$7 \cdot 0$	+0.3	697	719	+ 22
July	...	132	160	$+28$	$26 \cdot 9$	29-6	$+3 \cdot 0$	$6 \cdot 7$	$7 \cdot 0$	$+0 \cdot 3$	701	717	+ 16
Augnst	..'	128	157	+29	$27 \cdot 1$	$29 \cdot 8$	$+2 \cdot 7$	7-1	$7 \cdot 2$	$+0 \cdot 1$	704	718	+11
September	..'	132	163	+41	27.6	30-3	$+2.7$	$7 \cdot 3$	$7 \cdot 0$	$-0.3$	708	718	$+10$
October	...	131	162	+31	$28 \cdot 0$	$30 \cdot 5$	$+2 \cdot 5$	74	7.0	$-0.4$	710	718	+ 8
November	...	135	172	+37	$28 \cdot 1$	$30 \cdot 7$	$+2 \cdot 6$	$7 \cdot 2$	$6 \cdot 9$	$-0.3$	708	$7 \% 0$	+12
December	...	134	173	+39	$28 \cdot 6$	$30 \cdot 9$	$+2 \cdot 3$	$7 \cdot 2$	6.8	$-(1.4$	708	719	+ 11
Means	...	132	156	$+25$	26.8	29 • 7	$+30$	$7 \cdot 0$	$7 \cdot 2$	$+0.2$	704	717	+ 13

72
Kodaikanal observatory 1922-23.

Of the three magnetographs the declination one bas worked very satisfactorily, and except for losses consequent on the stoppage of the common driving clock, has shown no interruption due to any other cause This clock stopyed for frequent intervals on five different occasions during the year, and the light failed for a few hours on 31st August 1923. The V.F. clock has qiven constant trouble by frequent stoppages, and although it was removed, cleaned and adjusted once in February and again in Sepiember 1923, has shown little improvement. The light on this magnetograplh was adjusted several times during October and November 1922, due to the sudden falling down of the ordinates. The earth inductor and the galvanometer gave some trouble during Juls: 1923 and were adjusted by the Jlirector.
73. constants.

The table below gives the mean monthly values of the magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 ; 3}$ and the distribution factor $\log \left(1+\frac{\mathbf{P}}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1}$. The values of the moment " $m$ " in this table were derived from vibration observations taken with the chronograph and from the moment of inertia used for the computations in 1915 .

Mean values of the constants of Magnet No. 16 at Kodaikinal in 1922
73.
(Contd.)

74.

Mean base line values.

The table below gives the mean monthly obscrved and accepre base line values of the declination and horizontal force megnelograpt the accepted values have been used to compute the values of thes elements for 1922. The horizontal force base line values have ber derived from $H$ as determined with the moment of inertia used intu computations for 1915.

Base line ralues of magnetoyraplis at Kodaikānal 1922


The table below gives the monthly mean values of the magnetic lements for 1921 and 1922 and the annual changes for that period. The annual changes for horizontal force are derived from the moment of inertia used in the computations for 1915.
76.

Mean monthly values and annual changes.

Ainnal chanyes at Kodaikūnal in 1921-22


Mean values of magnetic clements at observatories in $192 ?$

77.

Mean values of magnotic elements in observatories in 1922.

NOTE-Figures in thick type represent the maximam and minimam values daring the month.
TABLE XLIII.- Diurna! Inequality of the Declination at Dehra Dün in 1922, (deduced from TABLE XLII)

（fom all availalite days）

30100 J	$8$	商	$\begin{aligned} & \because 2 \\ & 0 \end{aligned}$	-0	$\frac{\pi}{\sigma}$	$\stackrel{1}{6}$	$\begin{aligned} & 0 \\ & \substack{0 \\ 心 \\ \hline} \end{aligned}$	$\stackrel{\square}{\square}$	88	$\begin{aligned} & 6 \\ & 0 \\ & \hline 8 \end{aligned}$	\％	¢	$\frac{1}{6}$	9 88 88
0	$\therefore \underset{0}{2}$	$\begin{aligned} & 0 \\ & \end{aligned}$	$\underset{\underset{\sim}{n}}{\substack{n}}$	$\stackrel{\ddots}{\sigma}$	$\frac{e}{5}$	$\stackrel{9}{0}$	$\stackrel{\sim}{0}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sigma}{2} \end{aligned}$	${ }_{0}^{8}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\circ} \end{aligned}$	N		－	O   ¢
\％	$\stackrel{\pi}{\theta}$	¢	$\stackrel{\text { s }}{ }$	$\frac{e}{\theta}$	$\begin{aligned} & 0 \\ & 0 \cdot 1 \\ & 0 \end{aligned}$	$\underset{C}{8}$	$\stackrel{11}{81}$	$\underset{\infty}{\infty}$	¢ ¢ ¢	$\stackrel{1}{6}$	N	¢	$\begin{aligned} & \text { O} \\ & \text { O } \end{aligned}$	g   8
$\underset{\sim}{*}$	$\text { r } \stackrel{\infty}{\infty}$	$\begin{aligned} & 0 \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { B } \end{aligned}$	$\underset{~}{\underset{\sigma}{c}}$	$\frac{\Delta}{\sigma}$	$\stackrel{\infty}{8}$	$\begin{aligned} & \dot{8} \\ & \stackrel{\circ}{8} \end{aligned}$	$\begin{aligned} & \text { ్2 } \\ & \text { C, } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { B } \\ & 0 \end{aligned}$	$\underset{\sim}{\boldsymbol{N}}$	$\begin{aligned} & 10 \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { g } \end{aligned}$	$\frac{09}{\sigma}$	$\begin{aligned} & \boldsymbol{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$
－	$\cdots$	$\hat{\text { ® }}$	$\stackrel{1}{6}$	$\stackrel{\Phi}{\dot{\sigma}}$	$\bar{\sigma}$	$\stackrel{\theta}{8}$	$\frac{\sigma}{\sigma}$	$\underset{\substack{*}}{\substack{2}}$	¢	范	$\stackrel{\square}{\text { ¢ }}$	N1 No	$\stackrel{N}{\sigma}$	0   8   8
8	－	$\stackrel{\infty}{\infty}$	$\stackrel{9}{9}$	$\stackrel{O}{\sigma}$	$\frac{c 2}{\sigma}$	$\stackrel{\circ}{8}$	$\underset{\substack{\circ}}{P}$	$\stackrel{\text { ※ }}{\substack{0}}$	$\begin{aligned} & 0 \\ & \text { ò } \\ & \sigma 0 \end{aligned}$	$\underset{\infty}{\mathbb{N}}$	N1 N．	$\stackrel{-1}{\text { a }}$	$\frac{\bullet}{\infty}$	－9
$\stackrel{\square}{-}$	$\therefore \stackrel{\infty}{3}$	$\begin{aligned} & \because \\ & \stackrel{8}{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\varepsilon}{\varepsilon}$	$\underset{E}{E}$	$\stackrel{\infty}{\infty}$	$\underset{\theta}{\approx}$	$\underset{\chi}{8}$	$\begin{aligned} & \infty \\ & \dot{O} \end{aligned}$	$\stackrel{\sim}{\infty}$	81	$\begin{aligned} & \text { oy } \\ & \text { G0 } \end{aligned}$	$\frac{1}{6}$	＋
$\stackrel{\infty}{\sim}$		19 98	－1	$\frac{0}{6}$	$\underset{-7}{-7}$	$\frac{\pi}{\overline{0}}$	$\stackrel{\sigma}{\sigma}$	9	－1	9	${ }_{-8}^{41}$	$\frac{\infty}{\infty}$	$\frac{10}{6}$	－
$\stackrel{N}{\square}$	r	$\begin{aligned} & 0 \\ & \mathbf{N} \\ & \mathbf{0} \end{aligned}$	$$	$\frac{0}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{8}{8}$	$\underset{\underset{C}{3}}{\mathbf{B}}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & 61 \\ & 68 \end{aligned}$	$\stackrel{1}{\sim}$	－	$\stackrel{\infty}{\infty}$	＋	101 0
$\oplus$	r	$\stackrel{\ominus}{\mathrm{C}}$	$\begin{aligned} & \mathbb{N} \\ & \underset{O}{0} \end{aligned}$	$\stackrel{\oplus}{\boldsymbol{\theta}}$	$\frac{0}{\omega}$	$\frac{9}{\sigma}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\stackrel{\theta}{\approx}$	cion	$\begin{aligned} & \mathscr{\omega} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	N	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \hline 8 \\ & \text { \% } \end{aligned}$
$\stackrel{4}{-1}$	$\cdots$	$\begin{aligned} & \Omega \\ & \infty \\ & \hline \end{aligned}$	9	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\theta}{\sigma}$	$\frac{1}{5}$	$\begin{aligned} & \text { on } \\ & \text { 内 } \\ & \hline \end{aligned}$	$\frac{\cong}{\pi}$	$\stackrel{\infty}{\sigma}$	$\underset{\sim}{7}$	$\begin{aligned} & \stackrel{N}{\infty} \\ & \underset{C}{0} \end{aligned}$	$\underset{=0}{80}$	$\begin{aligned} & \boldsymbol{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{19}{0}$
ウ＇	$\cdots \stackrel{9}{60}$	$\stackrel{N}{E}$	$\underset{\leftrightarrow}{\boldsymbol{E}}$	$\begin{aligned} & 0 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\underset{\sim}{2}$	$\underset{\substack{c}}{\substack{2}}$	$\stackrel{+}{\stackrel{\circ}{\circ}}$	$\stackrel{-1}{29}$	읻.	$\underset{\rightarrow}{18}$	$\stackrel{\ominus}{6}$	-	$\underset{\theta}{\theta}$	\％
$\stackrel{8}{8}$	$i \frac{20}{i}$	$6$	$\frac{\sigma}{\sigma j}$	$8$	$\begin{aligned} & 1 \\ & i= \\ & c \end{aligned}$	$\begin{aligned} & \mathbf{9} \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 60 \end{aligned}$	+10	$\underset{\theta}{\infty}$	$\stackrel{\sim}{\square}$	$\begin{aligned} & \mathbb{N} \\ & \stackrel{0}{6} \end{aligned}$	$\underset{\sim}{\sigma}$	$\begin{aligned} & \mathrm{M} 9 \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \stackrel{\circ}{\circ} \end{aligned}$
$\begin{aligned} & \text { Ia } \\ & 0 \\ & 0 \\ & z \end{aligned}$	$\cdots \stackrel{10}{80}$	领。	$\stackrel{0}{\sigma}$	$\begin{aligned} & +1 \\ & \text { gJ } \end{aligned}$	$\stackrel{60}{6}$	$\stackrel{\uparrow}{\dot{\theta}}$	$\stackrel{\kappa}{\infty}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\stackrel{9}{+\prime \prime}$	$\stackrel{\ominus}{\mathrm{G}}$	$\begin{aligned} & \text { ి, } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { o } \\ & \text { O } \end{aligned}$	－	¢80
$\underset{\sim}{-7}$	$\lambda \stackrel{m}{\square}$	Ti	$\stackrel{\infty}{\boldsymbol{O}}$	$\stackrel{-1}{\circ}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{E} 1 \\ & \boldsymbol{\theta} \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{\sigma}}$	$\frac{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sigma}{\infty} \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{9}{9} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \end{aligned}$	9	$\stackrel{\sim}{\sigma}$	\％
$\bigcirc$	$\begin{gathered} 0 \\ r e \\ 0 \\ 0 \end{gathered}$	$\underset{\substack{0 \\ 0 \\ \hline}}{ }$	$\stackrel{N}{\dot{G}}$	$\underset{\sim}{\underset{心}{\circ}}$	$\begin{aligned} & 0 \\ & \stackrel{9}{6} \end{aligned}$	$\begin{aligned} & 10 \\ & 6 \\ & 6 \end{aligned}$	$\stackrel{\sim}{\circ}$	$\underset{\sigma}{7}$	$\begin{aligned} & \text { ¢ } \\ & \hline \circ \end{aligned}$	$\underset{\substack{1 \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \text { H } \\ & \underset{\circ}{8} \end{aligned}$	$\stackrel{10}{0}$	$\stackrel{8}{8}$	10 88 88
0	$i \frac{01}{6}$	$\begin{aligned} & 61 \\ & 60 \\ & \hdashline 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \substack{0} \end{aligned}$	$\stackrel{\sigma}{\sigma}$	$\begin{aligned} & \infty \\ & \mathscr{\sigma} \end{aligned}$	$\underset{\theta}{9}$	$\infty$   －	$\begin{aligned} & 10 \\ & 6 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & e \\ & 0 \\ & 0 \end{aligned}$	$\underset{\stackrel{H}{6}}{\underset{\sigma}{*}}$	$\begin{aligned} & \text { fi } \\ & \underset{O}{0} \end{aligned}$	$\stackrel{\square}{\square}$	E\％	$\stackrel{¢}{\circ}$
$\infty$	$\stackrel{+}{\mathbf{O}}$	$\stackrel{-}{\sigma}$	$\stackrel{-}{\sigma}$	$\begin{aligned} & \text { H } \\ & \underset{\sigma}{\prime} \end{aligned}$		$$	－	$\begin{aligned} & \mathbf{N} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { O } \end{aligned}$	$\underset{8}{\mathbf{8}}$	$\begin{aligned} & \mathbf{N} \\ & \underset{\circ}{\circ} \end{aligned}$	$\underset{\sigma}{\boldsymbol{\sigma}}$	S	61
t－	$\stackrel{9}{4}$	$$	$\stackrel{F}{6}$	$e_{0}^{0}$	$\begin{aligned} & \text { Cl } \\ & 6 \\ & \hline \end{aligned}$	$\frac{\infty}{\sigma}$	－	$\begin{aligned} & 10 \\ & \% \\ & \hline 8 \end{aligned}$	N	$\stackrel{\infty}{\underset{\sim}{\infty}}$	$\begin{aligned} & \neq{ }_{2}^{\prime} \\ & \sigma_{1} \end{aligned}$	$\stackrel{1}{6}$	$\stackrel{\infty}{\square}$	$\xrightarrow[6]{6}$
$\omega$	Co	$\hat{\dot{6}}$	$\stackrel{-}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty} \underset{\infty}{\infty}$	$\frac{0}{0}$	9818980	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\delta} \\ & \underset{\delta}{2} \end{aligned}$	¢	等	$\stackrel{\infty}{\infty}$	g ¢
1.3	$28$	$\stackrel{8}{0}$	$\stackrel{\infty}{C}$	$\stackrel{0}{\infty}$	$\stackrel{\sim}{-2}$	$\frac{\Psi}{\sigma}$	$\xrightarrow{19}$	$\stackrel{\stackrel{\rightharpoonup}{6}}{6}$	侖	$\stackrel{N}{\circ}$	$\dot{\mu}$	¢   ¢	¢	9 ¢
\＃	r品	$\vec{\Theta}$	$9$	$\stackrel{0}{\sigma}$	$\stackrel{\Delta}{0-1}$	$\infty$		$\stackrel{\leftrightarrow}{\infty}$	$\begin{aligned} & \underset{\sigma}{3} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & C_{0} \\ & \hline \end{aligned}$	$\underset{\sim}{\boldsymbol{O}}$	$\hat{\text { in }}$	罤	$\stackrel{\infty}{\infty}$
6	-	$\stackrel{-1}{6}$	$\stackrel{8}{8}$	$\stackrel{ \pm}{-1}$	$\stackrel{\sim}{6}$	$\stackrel{9}{9}$	$\stackrel{41}{61}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\infty}{8}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	10 Cl 8	81   80   8	$\cdots$	$\infty$ 0 0
81	$\stackrel{5}{5}$	$\stackrel{-1}{6}$	$\stackrel{\pi}{8}$	$\underset{\sigma}{\mathrm{N}}$	$\stackrel{N}{\sigma}$	$\frac{21}{6}$	$\underset{\sim}{i}$	$\underset{\infty}{\infty}$	$\underset{\substack{3}}{\underset{G}{2}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{19}{51}$	71 68	$\xrightarrow{81}$	8 8 8
$\rightarrow$	$\cdots$	$\vec{\theta}$	$\begin{aligned} & 11 \\ & \dot{\sigma} \end{aligned}$	$\frac{19}{6}$	$\stackrel{1}{\varepsilon}$	$\stackrel{i 1}{\theta}$	$\stackrel{\text { ® }}{\underset{\circ}{\circ}}$	$\stackrel{\rho}{\sigma}$	$\underset{8}{8}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{c} \end{aligned}$	0 $\square$	$\stackrel{9}{9}$	8	$\begin{aligned} & g i \\ & G \end{aligned}$
0	$\cdots$	$\begin{aligned} & 60 \\ & 61 \\ & 6 \end{aligned}$	$\underset{\hat{O}}{\boldsymbol{\theta}}$	$\stackrel{\oplus}{\omega}$	$\stackrel{\otimes}{\otimes}$	$\stackrel{\sigma}{\ominus}$	$\vec{F}$	$\stackrel{1 \rho}{C}$	$\underset{\sigma}{\sigma}$	$\underset{\theta}{\theta}$	$\begin{aligned} & \infty \\ & \stackrel{\theta}{\dot{\theta}} \end{aligned}$	$\begin{aligned} & \underset{+}{0} \\ & \mathbf{O} \end{aligned}$	$\stackrel{\infty}{\infty}$	$$
	$\underset{\underset{\sim}{\underset{~}{g}}}{ }$	$\begin{gathered} \stackrel{0}{0} \\ \mathscr{1} \end{gathered}$	蚍	$\begin{aligned} & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \frac{\square}{4} \end{aligned}$	$\underset{j}{\text { e }}$	$\xrightarrow{0}$	$\stackrel{\text { 上 }}{2}$	$\stackrel{\dot{B r}}{\underset{\pi}{4}}$	$\begin{aligned} & \stackrel{+}{a} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	

No＇re－Figares in thick type represent the maximam and minimam vaines during the month．
Table XLV.-Diurnal Inequality of the Horizontal Force at Dehra Dün in 1999, (deduced from TABLE XLIV)

Hours	0	1	$\because$	3	+	5	6	7	8	9	10	11		13	14	15	16	17	18	19	$\therefore 0$	21	22	23	0
Jan	\% -3	- 4	- 5	${ }_{-}^{\gamma}{ }^{\text {¢ }}$	${ }^{\gamma}{ }^{4}$	$-^{\gamma}$	$+$	7   +4	$\mid{ }_{+}^{\gamma} 8$	$\mid{ }^{\gamma}{ }^{\gamma} 6$	$\left\lvert\, \begin{aligned} & 7 \\ & +3\end{aligned}\right.$	+ $+^{2}$	$\left\lvert\, \begin{gathered}\gamma \\ +9\end{gathered}\right.$	${ }_{+}{ }^{2} 9$	$\left\lvert\, \begin{aligned} & 7 \\ & +7\end{aligned}\right.$	$\left\lvert\, \begin{gathered}\gamma \\ +1\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\gamma \\ -2\end{gathered}\right.$	$\mid-{ }^{\prime} 4$	$\left\|\begin{array}{c} \\ -3\end{array}\right\|$	$\mid-3$	$\left\lvert\, \begin{gathered} \\ -4 \\ -4\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\gamma \\ -2\end{gathered}\right.$	$\|$$\gamma$   -3	$\left\lvert\, \begin{gathered}\gamma \\ -2\end{gathered}\right.$	+2
Fe	-			- 2					2	- 1	+ 3	+8	+14	+ 17		+ 6	-3	- 7	- 8	$-8$	- $\varepsilon$	- 7			
M	-			-	$-2$			- 4		- 1	+ 7			14		$+5$	-3	$-7$	$\|-9\|$	$\mid-6$	$-4$	- 8	5		
Oct.				+	0				-2	- 5	- 2	+ 5	+	+13		+			-6						
Nov.																	- 3	- 6	$-8$	$3-9$	6				
D																									
$\begin{aligned} & \mathrm{Win} \\ & \mathrm{Me} \end{aligned}$							- 1	+ 1		+ 2	+ 5	+10	+11	+	+ 8	+ 3				-7					
Apr									-		+2	+						6	-8						
May	0		-	- 3	2	0	- 1	-4	- 5	-	- 1	+ 7	+ 11	+ 15	+ 11	7	$+2$	- 5	- 7	- 5	- 5	- 4	- 2		0
Jane	0	0		-1		-	+		-2	2	$2-2$	- 1	+ 4	+ 7	+ 9	$+6$	0	$4$	$\|-5\|$				- 2		0
July	+ 3	0					0		$2-4$			+1	$1+4$		+ 7										
${ }^{\text {at }}$	0	+ 1	+	0	0			- 5	$\mid-11$					9	9				- 4		- 1	0	$+2$		
se			+ 3	2				-4	-10	-11	11	- 4	$4+4$	+ 8	+ 13	+ 6		- 3	- 2	0	-	0	0		
Sammer Means	-1	0	0	- 1	- 1	0	0		-7	- 6	-	+	+ 6	+ 10	+ 10	+ 6			- 5	- 5	- 3	$-3$	-	o	0

Note_The Horizontal Force isgreater or leas than ihernean angign is $\rightarrow$ or - .

\％		잉	荅边	\％
$\bigcirc$		矿		¢
๕		\％	\％च \％\％\％\％\％\％	\％
® ${ }^{\text {® }}$		\％${ }_{\circ}$		\％
สี	人器	\％		¢
$\stackrel{8}{9}$	凮	\％		\％
$\stackrel{9}{-}$		\％		\％
$\stackrel{\infty}{\sim}$		\％		\％
$\pm$	右器㐱	\％		\％${ }^{\text {\％}}$
2		\％	荌占	\％
$\stackrel{10}{7}$		\％		\％
$\pm$		咸		\％
$\stackrel{\sim}{\square}$	－	8		\％̈
号		8		¢
$\square$	入－	枵		答
$\bigcirc$		\％		\％
O		웅		\％
$\infty$		管	串卡 为 荅占 吕	\％
$\stackrel{ }{-}$		\％		）
$\bigcirc$		$\overline{8}$		\％
${ }^{10}$		¢	或 码	吕
＊		항		芦
$\infty$		\％		\％
＊		就		荌
－	－¢ \％¢ ¢ ¢ ¢	产		哭
$\bigcirc$		\％		$\stackrel{\text { ¢ }}{\substack{\text { b }}}$
$\begin{aligned} & \text { U } \\ & \frac{\pi}{8} \\ & \hline \end{aligned}$				

[^7]$7^{\prime} \mathrm{A}$ BLE XLVII.—Diurnal Inequality of the Vertical Force at Dehra Dun in 1922, (deduced from T'a BLE XLVI.)


N082 W	- $\dot{0}$	0	N	+   $\dot{-1}$	$\stackrel{\rightharpoonup}{0}$	$\dot{0}$	$\infty$	$\stackrel{0}{0}$	$i$	$\cdots$	$\cdots$	10	$\stackrel{+}{0}$	$\stackrel{10}{\infty}$	
$\bigcirc$	$\cdots$	上	-	$\dot{O}$	$\dot{\theta}$	$\stackrel{\infty}{\infty}$	$\infty$	$\stackrel{\bigcirc}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\infty}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\dot{\infty}$	1	$\underset{\infty}{\infty}$	
-	-		5	$\dot{-}$	9	$\stackrel{9}{0}$	-	08 $\stackrel{-}{-}$	$\dot{\sim}$	$\stackrel{-}{\infty}$	0   0   0	¢	-	$\cdots$	
N	-		$\dot{\nabla}$	+	$\stackrel{10}{0}$	-	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	$\cdots$	N	$\stackrel{0}{\infty}$	$\stackrel{\bigcirc}{\circ}$	$\stackrel{\sim}{\circ}$	$\dot{\square}$	$\dot{\infty}$	
त	-		-	$\stackrel{0}{0}$	0	-	$\dot{\sigma}$	-	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\dot{\infty}$	$\begin{aligned} & \dot{O} \\ & \dot{O} \end{aligned}$	$\begin{aligned} & \dot{\theta} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \dot{\sigma} \\ & \dot{\sigma} \end{aligned}$	$\dot{\infty}$	
ค	$\\| \stackrel{\infty}{\dot{\varphi}}$	$\begin{aligned} & \mathbf{N} \\ & \dot{N} \end{aligned}$	$i$	$\dot{+}$	$\begin{aligned} & 10 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{\sim}{9} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{\theta} \end{aligned}$	-	0 $\infty$	$\stackrel{\sim}{\infty}$	$\stackrel{\square}{\square}$	is	$\stackrel{\infty}{\infty}$	$\dot{\infty}$	
$\stackrel{\square}{-1}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}\right.$	$\stackrel{\theta}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{\oplus}{\dot{\theta}}$	$\dot{\theta}$	\$	$\dot{6}$	+	$\stackrel{0}{\infty}$	$\cdots$	$\dot{\sim}$	-	$\dot{\infty}$	$\dot{\infty}$	
$\stackrel{\infty}{\sim}$		$\stackrel{\infty}{\infty}$	$\dot{\infty}$	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$	$\stackrel{\ominus}{-}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\Gamma}{\infty}$	$\dot{\dot{\infty}}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\square}{\infty}$	$\dot{\infty}$	$\begin{aligned} & \text { Q } \\ & \dot{\circ} \end{aligned}$	$\dot{\infty}$	
$\pm$	$\stackrel{\infty}{\dot{\varphi}}$	숭	$\dot{i}$	$\dot{\underline{0}}$	$\dot{0}$		$\dot{\dot{\sigma}}$	$\begin{aligned} & \dot{\theta} \\ & \dot{B} \end{aligned}$	$\therefore$	$\dot{\infty}$	$\dot{\infty}$	$\underset{\dot{\sigma}}{ }$	$\begin{aligned} & \sigma \\ & \dot{\sigma} \end{aligned}$	$\pm$	
$\stackrel{9}{1}$	$\dot{\oplus}$	$i$	$10$	$\begin{aligned} & \text { + } \\ & \dot{\theta} \end{aligned}$	$\begin{aligned} & 4 \\ & \dot{0} \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\dot{i}$	$8$	$\dot{\infty}$	$\dot{\infty}$	$\dot{\infty}$	$\dot{\dot{o}}$	$\dot{+}$	
$\stackrel{10}{10}$	-	$\begin{aligned} & \infty \\ & \dot{\phi} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$	io	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	$\dot{\mathrm{i}}$	$\stackrel{\Im}{i}$	$\stackrel{\Gamma}{\infty}$	$\begin{aligned} & \text { N } \\ & \dot{O} \end{aligned}$	$\dot{\infty}$	$\cdots$	
$\xrightarrow{\text { - }}$	$-\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\dot{\infty}$	$\begin{aligned} & \text { म } \\ & \dot{0} \end{aligned}$	$\dot{\sim}$	$\dot{\underline{0}}$	19	$\underset{\infty}{\infty}$	$\underset{\dot{\circ}}{\stackrel{\rightharpoonup}{0}}$	$\dot{\infty}$	$\begin{aligned} & \dot{\theta} \\ & \dot{\theta} \end{aligned}$	$\dot{0}$	$\dot{\infty}$	$\dot{\infty}$	$\cdots$	
9	$\\|-\infty$	$\dot{0}$	$\stackrel{7}{6}$	$\dot{\circ}$	$\stackrel{F}{\dot{0}}$	$\dot{\dot{O}}$	$\dot{\infty}$	$\ddot{\oplus}$	$\begin{gathered} \dot{\circ} \\ \dot{\circ} \end{gathered}$	$\dot{\infty}$	$\dot{i}$	$\dot{\infty}$	$\begin{aligned} & \text { Q } \\ & \dot{\text { on}} \end{aligned}$	10	
$\begin{aligned} & 9 \\ & 8 \\ & 7 \\ & 7 \end{aligned}$	- $-\dot{4}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{e} \end{aligned}$	$\begin{aligned} & \text { f } \\ & \dot{\circ} \end{aligned}$	$\dot{\infty}$	$\begin{aligned} & 09 \\ & 0 \\ & \square \end{aligned}$	$\therefore$	$\begin{aligned} & \text { G) } \\ & \text { e } \end{aligned}$	$\dot{i}$	ف	$\underset{F}{5}$	$\dot{\infty}$	$\dot{\dot{\sigma}}$	10 $\stackrel{\circ}{*}$	
$\cdots$	\|	$\dot{+}$	$\dot{i}$	$\stackrel{N}{\dot{O}}$	$\ddot{0}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\infty} \end{aligned}$	$\dot{\sim}$	$\ddot{\varphi}$	$\begin{aligned} & \dot{+} \\ & \dot{\phi} \end{aligned}$	$0$	$\dot{\infty}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\dot{\dot{\sigma}}$	$\stackrel{\square}{\square}$	
$\bigcirc$	-	مٌ	$\begin{aligned} & \infty \\ & \dot{0} \end{aligned}$	$\underset{\sim}{0}$	$\begin{aligned} & \dot{\sim} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \dot{\phi} \\ & \dot{\oplus} \end{aligned}$	$8$	$\stackrel{\sim}{i}$	$\dot{\infty}$	$\begin{aligned} & \text { p } \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\phi} \end{aligned}$	$\stackrel{\sim}{\infty}$	
$\sigma$	-	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\dot{\varphi}$	$\begin{aligned} & \bullet \\ & \dot{-} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\phi} \end{aligned}$	$\dot{0}$	$\dot{\infty}$	$\dot{i}$	$\dot{x}$	$\dot{\infty}$	$\underset{\infty}{\infty}$	$\begin{aligned} & \dot{\theta} \\ & \dot{8} \end{aligned}$	$\dot{\oplus}$	$\underset{\infty}{\infty}$	
$\infty$	$\left\lvert\, \begin{array}{ll} \infty \\ \hline \end{array}\right.$		$\dot{\theta}$	$\stackrel{0}{0}$	$\begin{aligned} & \text { is } \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\dot{O}} \\ & \hline \end{aligned}$	$\underset{\infty}{\infty}$		$\begin{aligned} & O \\ & i \end{aligned}$	$\dot{\infty}$	$\dot{\dot{O}}$	$\begin{aligned} & 61 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\theta} \\ & \hline \end{aligned}$	$\dot{\infty}$	
-		$\dot{i}$	$\dot{8}$	$\dot{0}$	¢	$\stackrel{9}{9}$	$\underset{\infty}{N}$	$\infty$	$\dot{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\dot{\odot}$	$\dot{\dot{O}}$	$\stackrel{\rightharpoonup}{\dot{0}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	
$\bullet$	$\left\lvert\, \begin{aligned} & 10 \\ & -i \\ & \hline \end{aligned}\right.$			$\begin{array}{r} 0 \\ 0 \\ -1 \end{array}$	$\dot{\theta}$	$\stackrel{9}{0}$	$\dot{\infty}$	$\underset{\sim}{\infty}$	$\underset{\infty}{0}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \dot{\theta} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sigma} \end{aligned}$	$\dot{\square}$	$\dot{\infty}$	
$\omega$		$\begin{aligned} & 0 \\ & i j \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \dot{-} \end{aligned}$	$\dot{0}$	$\stackrel{0}{0}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \dot{i} \end{aligned}$	$\stackrel{\infty}{i}$	$\begin{aligned} & \mathbf{N} \\ & \dot{\infty} \end{aligned}$	$\dot{\infty}$	$\dot{\theta}$	$\begin{aligned} & \ddot{\infty} \\ & \dot{\theta} \end{aligned}$	$\underset{\infty}{\stackrel{\infty}{\infty}}$	
-		$\begin{aligned} & 0 \\ & i \end{aligned}$	$\stackrel{N}{\therefore}$	$\stackrel{+}{\dot{~}}$	$\begin{array}{r} 01 \\ 0 \\ -1 \end{array}$	10	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \therefore \end{aligned}$	$\begin{aligned} & 0 \\ & \therefore \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\dot{\phi}$	$\stackrel{\oplus}{\sigma}$	$\cdots$	
$\infty$	$\\| \begin{aligned} & i \\ & i \end{aligned}$	$\dot{O}$	$\underset{i}{0}$	$\begin{aligned} & +1 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{1}{\mathbf{O}}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	$\ddot{i}$	$\begin{aligned} & 0 \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\varphi}{\dot{\varrho}}$	$\dot{\phi}$	$\dot{\infty}$	
N	$\stackrel{F}{i}$	$\begin{aligned} & \dot{O} \\ & i \end{aligned}$	$\underset{i}{i}$	$\begin{aligned} & +0 \\ & \dot{0} \\ & \hline \end{aligned}$	$\stackrel{?}{\dot{0}}$	$\dot{0}$	$\dot{\infty}$	$\begin{aligned} & \sigma \\ & \therefore \end{aligned}$	$\stackrel{Q}{\therefore}$	$\dot{0}$	$\dot{\infty}$	$\dot{\oplus}$	$\begin{aligned} & 0 \\ & \dot{\sigma} \end{aligned}$	$\dot{\infty}$	
$\checkmark$	$\underset{i}{i}$	$\stackrel{\rightharpoonup}{i}$	$\underset{i}{i}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ \dot{0} \\ \hline \end{array}$	$\dot{0}$	$\begin{aligned} & \infty \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\infty$	$\stackrel{0}{0}$	$\begin{aligned} & \dot{\theta} \\ & \dot{\theta} \end{aligned}$	$\dot{\infty}$	
$\bigcirc$		$\ddot{i}$	$\dot{\nabla}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & \hline \end{aligned}$	$\dot{8}$	$\begin{aligned} & 0 \\ & \dot{\infty} \end{aligned}$	$\therefore$	$\dot{\infty}$	$\dot{\theta}$	$\dot{m}$	$\begin{aligned} & \varphi \\ & \dot{0} \end{aligned}$	■	$\begin{aligned} & \text { ه } \\ & \dot{\infty} \end{aligned}$	
	$\underset{\sim}{\mathrm{I}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 10 \end{aligned}$	$\underset{y y y y}{8}$	+	$\begin{aligned} & 8 \\ & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & \dot{\otimes} \\ & \text { هِ } \end{aligned}$		$\underset{\sim}{E}$	$\stackrel{\theta}{\Rightarrow}$	$\stackrel{\oplus}{\Xi}$	$\underset{\sim}{\leftrightarrows}$	$\stackrel{8}{1}$	$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{\omega} \end{gathered}$		

Note-Figures in thick type represent the maximum and minimum valnes during the month.
table xlix. - Diurnal Inequality of the Dipat Dehra Dun in 1922 (deduced from TABLE XLVIII).


TABLE' LI.—Diurnal Inequality of the Declinatoin at Toungoo in 1922, (deduced from TABLE L)

Hoars	0	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0
Jan.	0	0	-0.1	0	-0.2	-0.4	-0.6	-0.8	-0.4	+0.4	+ $0 \cdot 5$	$-0.1$	-0.4	-0.1	+0.2	+0.4	+0.7		+0.2	$+0.3$	+0.3 +0.2	$\left(\begin{array}{l}+0.2 \\ -0.1\end{array}\right.$	+0.1 -0.1	+0.1	0
Feb.	0	0	+0.1	0	+0.1	0	-0.2	-0.1	-0.3	-0.5	-0.9	-0.9	-0.8	$-0 \cdot 1$	+0.7	+1.1	+1.2	+0.7	+0.2	+0.2	+0.2	-0.1	-0.1	0	0
Mar.	-0.1	0		$0 \cdot 1$	-0.1	-0.2	-0.1					+0.6	-0.6		-1-1		+		0						-0.1
Oct.	+0.		+0.1	-	$-0 \cdot 1$	$0 \cdot 1$	-0.1	. 5	+1.0	+0.8	0	. 7	3	-1-3	$0 \cdot 8$	0	+0.5		0	+0.1	0	1	0	0	0
N	0			-			-0.8		-0.4		+0.5					+0.3					+ 0.1	0	0	$+0.1$	0
Dec.	+0.1	0				$0 \cdot 5$				$\cdot 1$	+0.1	+0.1		+0.2	+0.3	+0.5						+0.2	+0.]	+0.1	+
Winter Means	0	0	0	-0.1	-	-0.3	-0.4	,					-0.5	-0.4	-0.1	+0.3	+0.6	+0.5	+0.2	+0.1	$+0 \cdot 1$	0	0	0	0
April	+0.1	+0.2	+0.3	$+0 \cdot 2+$	$+0 \cdot 2$	+0.2	+ $0 \cdot 5$	+1.4			- 7	-0.5													
May	0	+0.	+0.2	+0.2	2	+0.4	+1.4	-3	+2.4	+1.6	0.1	-1.0	-1.9	1.	$1 \cdot 4$	-1.0	-0.2	+0.1	+0.1	-0.	-0.3		-0	-0	0
Jane		+0.1														-1.4	-0.8		-0.2	-0					0
						+0.6					+0.			8											
Jaly	0	+0.1	+0.3	$+0 \cdot 4$		+ 0.7	+1 $\cdot 6$	+2•3	2		+0.6	$-0 \cdot 4$	-1.6	-1.8		5		0	$0$	-0				-0	0
Ang.	-0.1	+	+	+		+0.6	+1/7	+2.5	+		$0 \cdot 3$	-1-3	-1.9			0.5	0	$+0.4$	0	0.	3	-0.3	-0.3	-0.2	-0.1
Sept.	-0.1	+0.1	+0.3	$+0 \cdot 4$	$+0 \cdot 3$	+0.3	+1.	+2.	+	+0.9	-0.3	-1•3	-2.0)	$-1 \cdot 9$	-	-0.5	+0.3	+0.5	0			-0.2	-0.	-0	-0
Summer Means	0	+0.1				+0.5	+1-3			+1.4	+0.2		-1.8	-1.9		-	-0.2	2	0	-0.2	-0.3	-0.3	0.	-0.1	0


Вивәп	－	冎	$\stackrel{\text {－}}{\sim}$	$\hat{6}$	N	$\stackrel{\sim}{\sim}$	風	吕	¢	－8	－	感	8	8
$\bigcirc$	－	$\underset{\sim}{1}$	$\stackrel{\text { ® }}{\text { ¢ }}$	冎	$\stackrel{\sim}{6}$	$\stackrel{9}{0}$	$\stackrel{0}{\sim}$	$\stackrel{\text { N1 }}{+}$	$\underset{\sim}{\mathbf{H}}$	－	10	$\stackrel{10}{\square}$	$\underline{6}$	＊
ก	入 ${ }_{\text {¢ }}^{\text {¢ }}$	－	N	2	$\underset{\sim}{\mathscr{O}}$	$18$	$\underset{\sim}{\text { ¢ }}$	$\underset{\sim}{7}$	$\underset{\sim}{0}$	$\stackrel{0}{n}$	－909	$\stackrel{7}{-1}$	$\xrightarrow{8}$	N
N	入⿳八ّ口1	¢	$\underset{\sim}{N}$	$\overrightarrow{0}$	$\stackrel{\bigoplus 0}{\square}$	H	※	$\stackrel{5}{9}$	$\stackrel{-1}{90}$		$\begin{aligned} & 10 \\ & \stackrel{1}{2} \end{aligned}$	8	$\stackrel{8}{4}$	－8
ส	入＊	$\begin{aligned} & \text { が } \\ & \text { ت } \end{aligned}$	$\underset{\sim}{\oplus}$	$\underset{J}{9}$	Oీ	¢	$\stackrel{\text { ®1 }}{\text {－1 }}$	－	$\stackrel{\rightharpoonup}{0}$	－	$\stackrel{3}{-1}$	$\stackrel{1}{\square}$	0	$\stackrel{1}{1}$
앙	－	$\underset{\underset{i}{\boldsymbol{e}} \underset{\sim}{+1}}{ }$	$\stackrel{\text {－}}{\sim}$	$\underset{\sim}{\text { g }}$	$\underset{=}{0}$	$\stackrel{9}{7}$	$\underset{\sim}{7}$	$\underset{\sim}{*}$	$\stackrel{r}{n}$	范	잉	－88	－	－
9	－	$\stackrel{\text {－}}{\sim}$	$\stackrel{\varrho}{\square}$	$\stackrel{10}{\circ}$	8	$\stackrel{\sim}{6}$	$\underset{\sim}{\underset{\sim}{\underset{\sim}{*}}}$	$\underset{\sim}{\sim}$	$\stackrel{8}{8}$	$\stackrel{9}{10}$	$\begin{aligned} & 90 \\ & 0 \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\infty}$	$\stackrel{\text { H }}{\substack{\text { a }}}$	－
$\stackrel{\infty}{-}$	ช＇9	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \\ & \hline \end{aligned}$	$\underset{\sim}{i n}$	$\underset{\sim}{O}$	$\underset{\sim}{0}$	宕	$\underset{\sim}{\mathrm{N}}$	$\underset{\square}{ \pm}$	$\overline{20}$	$\stackrel{10}{\hat{O}}$	$\underset{\sim}{4}$	${ }^{10}$	$\stackrel{\infty}{ \pm}$
$\stackrel{-}{2}$	入⿳亠丷厂犬	$\begin{aligned} & \text { as } \\ & \underset{\sim}{\prime} \end{aligned}$	욱	点	苟	$\begin{aligned} & \infty \\ & \underset{\sim}{8} \end{aligned}$	$\stackrel{\otimes}{\underset{\sim}{c}}$	$\begin{aligned} & 9 \\ & \hline \end{aligned}$	$\stackrel{1}{n}$	$\stackrel{\stackrel{\sim}{\circ}}{\stackrel{\circ}{\circ}}$	$8$	ก	$\stackrel{4}{10}$	－
$\stackrel{\square}{-1}$	－	$\begin{aligned} & 10 \\ & \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{9}{2} \end{aligned}$	$0$	$\stackrel{\rightharpoonup}{\mathrm{t}}$	$\underset{\sim}{N}$	$\xrightarrow{8}$	$\stackrel{10}{\sim}$	$\stackrel{10}{10}$	$\stackrel{\ominus}{0}$	$\underset{\sim}{\infty}$	－	$\underline{\square}$	$\stackrel{1}{\sim}$
$\stackrel{10}{\sim}$	入？	$\underset{\sim}{9}$	$\begin{aligned} & \stackrel{10}{7} \\ & \hline \end{aligned}$	$\because$	N	$9$	$\begin{aligned} & \text { 合 } \end{aligned}$	$\stackrel{\infty}{10}$	$\stackrel{\Gamma}{\varrho}$	$\mathrm{O}$	$\begin{array}{r} 18 \\ \substack{8 \\ \hline} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\stackrel{8}{0}$	$\stackrel{+}{0}$
$\pm$	入－	$\underset{\sim}{9}$	$0$	$10$	$\underset{\sim}{8}$	只	980	$\stackrel{\infty}{\square}$	$\stackrel{0}{1}$	上	$\underset{\sim}{N}$	$\stackrel{\square}{0}$	E	N
$\stackrel{9}{-}$	$\stackrel{0}{2}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\bullet} \end{aligned}$	$\begin{aligned} & 10 \\ & \hline 0 \end{aligned}$	$\stackrel{\mathscr{D}}{\infty}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	－	只	$\underset{\sim}{\Phi}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{N}$	$E$	各	\％
$\begin{array}{r} \hline 5 \\ \circ \\ 0 \\ \hline Z \end{array}$	$\xrightarrow{20}$	$\underline{0}$	$\underset{\square}{10}$	$\stackrel{8}{9}$	$\underset{-}{\text { H゙ }}$	$\stackrel{8}{9}$	空	¢	－	$\stackrel{\sim}{\infty}$	$\underset{\sim}{\theta}$	$\underset{\sim}{\pi}$	$\stackrel{8}{8}$	－81
$\stackrel{7}{7}$	$\bigcirc \sqrt{18}$	犬i犬	E	$\stackrel{\mathbb{\infty}}{\underset{\sim}{\infty}}$	$\stackrel{10}{\stackrel{10}{\leftrightarrows}}$	$\stackrel{\text { at }}{\stackrel{\rightharpoonup}{\circ}}$	－	－	$\underset{\sim}{\underset{\sim}{8}}$	$\underset{\sim}{\infty}$	$\stackrel{1}{2}$	N	$\stackrel{8}{7}$	－
$\bigcirc$	$\stackrel{\infty}{\sim}$	$\stackrel{O}{\sim}$	$\underline{0}$	$\underset{\sim}{\infty}$	$\stackrel{8}{\underset{\sim}{2}}$	$\stackrel{\infty}{\sim}$	－	$\stackrel{8}{7}$	$\stackrel{8}{\infty}$	$\stackrel{19}{2}$	湯	8	$\stackrel{19}{10}$	年
$\bigcirc$	$\stackrel{7}{7}$	$\begin{aligned} & \text { gr } \\ & \underset{\sim}{\prime} \end{aligned}$	$\stackrel{9}{\ddagger}$	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 10 \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	9	$\xrightarrow{+}$	$\stackrel{10}{\sim}$	$\stackrel{\sim}{5}$	$\begin{aligned} & 10 \\ & \hline 1 \end{aligned}$	$\underset{-}{\square}$	180	$\stackrel{9}{9}$
$\infty$	－	$\underset{\sim}{7}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	足	怘	合	$\stackrel{\text { ¢ }}{\text { ¢ }}$	＋	F	$\stackrel{8}{7}$	造	通	$\stackrel{8}{9}$
－	－${ }_{\text {感 }}$	$\begin{gathered} \infty \\ \stackrel{9}{9} \end{gathered}$	$\vec{\sim}$	$\stackrel{8}{0}$	$\approx$	$0$	$\stackrel{8}{2}$	$\stackrel{\text { ヘ }}{\text {－}}$	管	$\stackrel{4}{\square}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\xrightarrow{4}$	$\begin{aligned} & \text { 感 } \end{aligned}$	\％
$\bigcirc$	$i-\infty$	曒	rer	$8$	$\underset{\sim}{E}$	$\stackrel{N}{2}$	－	$7$	员	$\underset{\sim}{\mathrm{O}}$	$\begin{gathered} 0 \\ \xrightarrow[1]{0} \end{gathered}$	$\stackrel{4}{\sim}$	$\underline{¢}$	－
$\bigcirc$	$\cdots$	$\underset{\sim}{\oplus}$	$\underset{\sim}{\circ}$	禼	$\otimes$	$\mathbb{N}$	$\stackrel{8}{4}$	$\stackrel{\text { ® }}{+}$	$\stackrel{+}{0}$	8	م	\％	0	$\stackrel{\text { ® }}{\text {－}}$
－	$\stackrel{+}{\text { N }}$	$\stackrel{\sim}{\square}$	$\underset{\sim}{9}$	菏	옥	$\underset{\sim}{8}$	$\stackrel{\text { r }}{\sim}$	$\stackrel{7}{\text { F }}$	$\stackrel{\sim}{0}$	8	管	$\stackrel{\square}{3}$	$\stackrel{-1}{\square}$	$\xrightarrow{31}$
$\infty$	\|	$\underset{\sim}{n}$	$\underset{\sim}{0}$	$18$	$\underset{\sim}{0}$	$\begin{aligned} & \hline \infty \\ & \substack{\infty \\ \hline} \end{aligned}$	$\stackrel{0}{T}$	F	$\stackrel{7}{10}$	－	－	\％	0	吕
$N$	$\cdots$	$\begin{aligned} & 9 \\ & \stackrel{9}{4} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{1}}$	$\begin{aligned} & \text { + } \\ & \stackrel{H}{0} \end{aligned}$	$\underset{\sim}{\underset{O}{0}}$	$0$	$\stackrel{10}{\sim}$	$\stackrel{97}{7}$	-	感	$\stackrel{\text { a }}{\sim}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{8}{9}$	$\stackrel{\sim}{\square}$
H	入芸	$\stackrel{\text { N }}{\hat{y}}$	Ai	$\begin{aligned} & \text { H } \\ & \stackrel{10}{2} \end{aligned}$	$\ddot{O}$	8	$\pm$	$\stackrel{\infty}{\sim}$	$\stackrel{+}{\text { H }}$	$\stackrel{\square}{\text { ® }}$	$\stackrel{1}{1}$	101	吕	$\stackrel{8}{\square}$
$\bigcirc$	＞ 10	$\begin{aligned} & \text { ei } \\ & \text { il } \end{aligned}$	$\stackrel{\ominus}{\stackrel{\circ}{4}}$	in		\％	$\stackrel{9}{\square}$	$\stackrel{\text { 「1 }}{\text {－}}$	잉	$\stackrel{8}{8}$	盛	10	$\stackrel{9}{\square}$	管
	$\begin{aligned} & \text { ㅂ } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\Phi}{\Phi} \end{aligned}$	$\begin{aligned} & \stackrel{4}{0} \\ & \underset{y}{3} \end{aligned}$	$\begin{aligned} & \text { ث゙ } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \text { ó } \end{aligned}$	$\begin{array}{\|} \dot{\otimes} \\ \ddot{\theta} \end{array}$		ت	$\stackrel{\oplus}{ \pm}$	$\stackrel{\otimes}{\square}$	$\stackrel{D}{D}$	$\stackrel{\dot{60}}{\underset{\tau}{e}}$	莒	


$\bigcirc$	$\sim_{1}^{0}$	1	$\stackrel{\square}{1}$	1	10	$\stackrel{5}{5}$	$\stackrel{ }{\circ}$	1	$\infty$	$\stackrel{5}{5}$	10	1	N 1	1
※	$\sim_{1}^{\infty}$		$\cdots$	$\underset{1}{7}$	$\pm$	$\cdots$	1	1	0 1	$\cdots$	1	1	$\stackrel{+}{1}$	$\infty$
N	$\Gamma_{1}^{\infty}$	$\underset{\mathrm{I}}{\mathrm{~F}}$	$\underset{\sim}{m}$	$\underset{1}{7}$	$\underset{I}{7}$	$\begin{aligned} & \sigma_{1} \\ & 1 \end{aligned}$	$\begin{gathered} 0 \\ \hline \end{gathered}$	$\underset{1}{9}$	$\underset{1}{7}$	$\begin{aligned} & 0 \infty \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$1$	$\stackrel{1}{1}$	1 1
N	$\sim_{1}^{\infty}$		$\underset{\text { I }}{\text { I }}$	$\underset{1}{7}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \end{aligned}$	$\underset{I}{7}$	$\stackrel{H}{1}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 0 \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\stackrel{1}{1}$	¢
－	$r_{1}$	$\mathfrak{\imath}$	ت	$\stackrel{\infty}{1}$	$\underset{\sim}{\sim}$	$\stackrel{9}{1}$	$\stackrel{\rightharpoonup}{\mathrm{I}}$	$9$	$\underset{1}{7}$	$\overrightarrow{\mathrm{I}}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$1$	1	1
$\stackrel{\square}{\square}$	$\stackrel{N}{1}$	$9$	$\underset{1}{9}$	$\begin{gathered} 0 \\ 1 \end{gathered}$	$\underset{\sim}{\underset{\sim}{1}}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\stackrel{\circ}{1}$	$\stackrel{m}{i}$	$\underset{\mathrm{I}}{\underset{\mathrm{I}}{2}}$	$\underset{\mathbf{1}}{\mathbf{N}}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\cdots$
$\stackrel{\infty}{-1}$	$\sim_{1}^{\infty}$		$1$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$9$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\underset{\sim}{\boldsymbol{m}}$	$\stackrel{9}{1}$	$\underset{1}{H}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\underset{1}{0}$	$\stackrel{0}{0}$	$\stackrel{\text { N }}{\sim}$
$\stackrel{\square}{-}$	$\sim 1$	$\begin{gathered} \infty \\ 1 \end{gathered}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & \bullet \\ & 1 \end{aligned}$	$\underset{1}{7}$	$\underset{i}{7}$	$\stackrel{\circ}{1}$	$\stackrel{0}{1}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\stackrel{0}{1}$	$\stackrel{9}{1}$
9	$\cdots$				$\begin{aligned} & 10 \\ & 1 \end{aligned}$	I	$\overline{\mathrm{N}}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\overrightarrow{\mathbf{l}}$	$\begin{gathered} \mathrm{N} \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$
$\stackrel{10}{-}$	$r_{+}^{+N}$					$+$	+ +	$\infty$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 40 \\ & + \end{aligned}$	$\begin{aligned} & \text { م }+ \\ & + \end{aligned}$	$\begin{aligned} & -1 \\ & + \end{aligned}$	$\begin{aligned} & 20 \\ & + \end{aligned}$	+ + +
$\xrightarrow{\text {－}}$	$i_{+}^{\infty}$		$+$	$\stackrel{\Im}{+}$		$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{aligned} & 7 \\ & + \end{aligned}$	$\stackrel{\infty}{+}$	$\stackrel{\text { H }}{+}$	$\stackrel{\text { N }}{+}$	$\stackrel{\text { N }}{+}$	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\infty$ +	$\stackrel{\text { ® }}{+}$
$\stackrel{\square}{\square}$	$\stackrel{\Im}{+}$	$+$	$\stackrel{N}{\operatorname{co1}}+$	$\begin{gathered} \text { त } \\ + \end{gathered}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	न	$\stackrel{\infty}{+}$	$\begin{aligned} & \text { en } \\ & + \\ & + \end{aligned}$	$\stackrel{\text { N }}{\stackrel{N}{+}}+$	$\stackrel{\infty}{+}$	$\stackrel{r}{+}$	$\begin{aligned} & \bullet \\ & + \\ & + \end{aligned}$	$\stackrel{10}{+}+$	$\stackrel{9}{+}$
$\begin{aligned} & \hline 0 \mathrm{O} \\ & \stackrel{y}{4} \end{aligned}$	$\stackrel{8}{+}$	$\begin{aligned} & a_{1} \\ & + \end{aligned}$	$\stackrel{+}{\infty}+$	$\begin{gathered} \infty \\ \underset{\sim}{N} \\ + \end{gathered}$	$\begin{aligned} & \text { N } \\ & + \\ & + \end{aligned}$	$\stackrel{N}{+}$	$\begin{gathered} 10 \\ \text { N1 } \\ + \end{gathered}$	$\begin{gathered} \infty \\ + \\ + \end{gathered}$	$\begin{gathered} \text { R-1 } \\ + \end{gathered}$	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$\stackrel{9}{7}+$	$\stackrel{N}{+}$	$\stackrel{-}{+}$	N + +
$\cdots$	$\begin{array}{r} 9 \\ + \\ + \end{array}$	$+$	$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \\ & + \end{aligned}$	$\begin{gathered} 10 \\ + \\ + \end{gathered}$	$\begin{aligned} & \text { O+ } \\ & + \\ & + \end{aligned}$	$\begin{aligned} & 101 \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \dot{N} \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & + \end{aligned}$	$\begin{gathered} \text { N } \\ + \end{gathered}$	$\stackrel{9}{+}+$	$\stackrel{+1}{+}$	$\stackrel{\oplus}{+}$	＋へָ
을	$\stackrel{\sim}{+}$	$+$	$+$	$\begin{aligned} & 0 \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$	$\stackrel{19}{+}$	$\stackrel{\infty}{+}$	$\begin{gathered} \underset{N}{N} \\ + \end{gathered}$	$\begin{aligned} & \overrightarrow{21} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & 8 \\ & + \\ & + \end{aligned}$	$\stackrel{10}{+}$	$\xlongequal[+]{7}$	$\stackrel{\text { N }}{+}$	$\stackrel{\infty}{+}$
$\sigma$	$\gamma_{+}^{\circ}$	$\stackrel{\text { ®1 }}{\stackrel{1}{+}}$	$+$	$+$	$\stackrel{90}{+}$	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\stackrel{7}{7}$	$\stackrel{\pi}{+}$	$\stackrel{9}{+}$	$\stackrel{\mathbf{N}}{+}$	$+$	$\begin{aligned} & + \\ & + \end{aligned}$	+ + +	＋ +
$\infty$	${ }^{\prime}+$	$\begin{aligned} & +4 \\ & + \end{aligned}$	$\stackrel{r}{1}$		$\begin{aligned} & 1- \\ & + \end{aligned}$	$\begin{aligned} & 20 \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	1	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\infty$	$\begin{aligned} & N \\ & 1 \end{aligned}$	$\begin{aligned} & \varphi \\ & 1 \end{aligned}$	$\bigcirc$
5	$r_{+}^{\infty}$	$\overrightarrow{1}$		$1$	$+$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\bigcirc$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\bigcirc$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$7$
－	$i_{1}^{*}$	$1$	I			$\begin{aligned} & 0 \\ & 1 \end{aligned}$	N	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\oplus$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$		$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	$10$
6	${ }^{10}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$1$	$1$	$1$	$1$	$\begin{aligned} & \text { + } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	F	$\begin{aligned} & H \\ & 1 \end{aligned}$	$1$	$\bigcirc$
－	$\lambda_{1}$		1	1	1	I		$0$	$\begin{gathered} 0 \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	I	$\mathfrak{m}$	$a 1$	$\stackrel{*}{*}$
$\infty$	$\lambda_{1}^{\infty}$	$1$	$\infty$	E	$1$	$\begin{gathered} \infty \\ 1 \end{gathered}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	I	$\begin{gathered} N \\ 1 \end{gathered}$	f	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	$\bullet$
$\bigcirc$	$\sim_{1}^{*}$	$1$		$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \text { + } \\ & 1 \end{aligned}$	$1$	$1$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\infty$	r	$\odot$	円	$\stackrel{+}{+}$	F
$\cdots$	$r_{1}^{+}$	$\stackrel{\rightharpoonup}{1}$	$1$	$1$	$1$	$\stackrel{N}{1}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{1}}{1}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$1$	$1$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	+ 1	$5$
$\bigcirc$	$\sim_{1}^{\circ}$	1	$\overline{1}$	$1$	10	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\underset{1}{9}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & - \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & + \\ & 1 \end{aligned}$	$\stackrel{\square}{\square}$
$\begin{aligned} & \text { D } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	号	$$	它	: ذ	$\begin{aligned} & \dot{0} \\ & \dot{8} \end{aligned}$	$\dot{\oplus ்}$		$\begin{aligned} & \text { ت} \\ & \text { 吕 } \end{aligned}$	俞	$\begin{gathered} \text { \& } \\ \text { 号 } \end{gathered}$	$\stackrel{B}{D}$	$\begin{aligned} & \text { 吡 } \\ & \text { 俗 } \end{aligned}$	$\underset{\sim}{\dot{N}}$	㟧吕

I．IV．－Hourly means of Vertical Force in C．G．S．units corrected for temperature at Toungoo it 1922 （rrom available daye） Horizontal Force $=\cdot 16000$ c．g．s．+ tabular quantity

Suren		$\stackrel{0}{2}$		$\stackrel{9}{\square}$
$\bigcirc$	$\sim$～	$\stackrel{9}{\square}$	式式 N N N \％	¢
®		$\stackrel{9}{9}$	ํ ¢ ¢ ํ ํ N N	¢
込		$\stackrel{\infty}{\sim}$	ํN N N N N N N N	กิ
ลี		E		令
¢		F		İ
$\stackrel{1}{\square}$		$\stackrel{\text { r }}{2}$		용
$\stackrel{\infty}{\sim}$		$\underset{\sim}{2}$		웅
$\stackrel{\square}{2}$		$\stackrel{1}{2}$	우숫ㅅN ㅅNN	N
9	올	$\stackrel{\square}{1}$		¢
$\stackrel{18}{9}$		\％		운
$\pm$	入윤	स	贸	$\stackrel{\square}{1}$
$\stackrel{\sim}{\square}$		안		F
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	r足 员 号 吕 을	$\stackrel{5}{\circ}$	号気吕 足点只	¢
च		E		${ }_{8}^{\circ 8}$
$\bigcirc$		8		\％
の	$\therefore \text { 人 }$	$\stackrel{\sim}{1}$	㤩	$\bigcirc$
$\infty$		$\stackrel{N}{1}$	込気気気忒足	$\stackrel{\infty}{1}$
－		$\stackrel{3}{1}$		í
$\bigcirc$		$\stackrel{\infty}{\sim}$		是
10		$\stackrel{\sim}{1}$		然
$\stackrel{+}{+}$	$\therefore \vec{N}$	$\underset{\sim}{\infty}$		21
$\infty$	$\rightarrow \underset{N}{\circ} \underset{N}{\infty} \text { N N N }$	$\stackrel{\infty}{\sim}$		哭
${ }^{\sim}$		$\stackrel{9}{8}$		全
$\cdots$		$\underset{\sim}{\infty}$		\％
$\bigcirc$		$\stackrel{\infty}{\sim}$		腎
$\begin{aligned} & \text { 置 } \\ & \hline \end{aligned}$				悊罳

Note－Figures in thick type represent the maximam and minimum vaiues during the month．
TABLE LV.-Diurnal Inequality of the Vertical Force at Toungoo in 1922 (deduced from TABLE LIV.)

NOTE-Figares in thick type represent the maximam and minimam values during the month.
 DIP N. $23^{\circ}+$ tabular quantity

Hours	0	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0	宦
							$7 \cdot 6$	$7 \cdot 4$			$6 \cdot 4$	$0 \cdot 1$	6.1	$6 \cdot 5$	6.9	$7 \cdot 3$	7•6	7-6								-
Jan.	$7 \cdot 8$	$7 \cdot 7$	$7 \cdot 7$	7-3	$7 \cdot 7$	7-6	7-6	7-4	7•3	7-0	$6 \cdot 4$	6-1	6.1	$6 \cdot 5$	$6 \cdot 9$	$7 \cdot 3$	7•6	$7 \cdot 6$	7.6	$7 \cdot 7$	$7 \cdot 7$	7.8	$7 \cdot 7$	$2 \cdot 8$	$7 \cdot 8$	$7 \cdot 4$
Feb.	$8 \cdot 0$	$8 \cdot 0$	$7 \cdot 9$	$7 \cdot 8$	$7 \cdot 8$	7-8	$7 \cdot 7$	$7 \cdot 6$	$7 \cdot 2$	6.6	$6 \cdot 2$	$6 \cdot 0$	$6 \cdot 2$	$6 \cdot 8$	$7 \cdot 3$	$7 \cdot 5$	$7 \cdot 7$	$7 \cdot 7$	7-7	$7 \cdot 9$	$8 \cdot 0$	$7 \cdot 9$	8.0	$8 \cdot 0$	$7 \cdot 9$	7.5
Mar.	$8 \cdot 2$	$8 \cdot 2$	8.2	8.0	$8 \cdot 0$	$8 \cdot 0$	$8 \cdot 0$	$8 \cdot 2$	7-8	$6 \cdot 9$	$6 \cdot 1$	$5 \cdot 4$	$5 \cdot 1$	$5 \cdot 8$	$6 \cdot 6$	7-6	$7 \cdot 7$	$7 \cdot 8$	$7 \cdot 7$	$7 \cdot 9$	7.9	$8 \cdot 0$	$8 \cdot 2$	$8 \cdot 1$	$8 \cdot 1$	$7 \cdot 5$
Oct.	$7 \cdot 7$	$7 \cdot 6$	$7 \cdot 6$	76	7-4	$7 \cdot 4$	$7 \cdot 5$	$7 \cdot 5$	7-0	$6 \cdot 2$	$5 \cdot 6$	$5 \cdot 2$	$5 \cdot 2$	5.9	$6 \cdot 6$	$7 \cdot 2$	$7 \cdot 3$	7-2	$7 \cdot 4$	7-4	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 6$	7-7	$7 \cdot 6$	$7 \cdot 0$
Nov.	7-2	7-2	$7 \cdot 2$	$7 \cdot 0$	$7 \cdot 0$	7-0	$7 \cdot 0$	$7 \cdot 0$	$6 \cdot 8$	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 8$	$5 \cdot 9$	$6 \cdot 2$	6.4	$6 \cdot 6$	$6 \cdot 9$	7-0	7-2	$7 \cdot 3$	$7 \cdot 3$	7-3	$7 \cdot 4$	$7 \cdot 4$	7.2	$6 \cdot 9$
Dec.	7.2	$7 \cdot 1$	$7 \cdot 1$	7-1	$7 \cdot 0$	7-0	6.9	$6 \cdot 8$	$6 \cdot 7$	$6 \cdot 4$	$6 \cdot 1$	$5 \cdot 8$	$5 \cdot 8$	6.1	$6 \cdot 5$	$6 \cdot 7$	$6 \cdot 8$	$7 \cdot 0$	$7 \cdot 1$	7-1	$7 \cdot 2$	$7 \cdot 1$	$7 \cdot 1$	$7 \cdot 2$	7•1	6.8
W:arer لآges	7•7	$7 \cdot 6$	7-6	$7 \cdot 6$	7•5	7-5	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 1$	$6 \cdot 6$	$6 \cdot 1$	5	$5 \cdot 7$	6. 2	6.7	7	7-3	$7 \cdot 4$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 6$	7-6	$7 \cdot 7$	7	7-6	$7 \cdot 2$
April	$7 \cdot 5$	$8 \cdot 0$	$7 \cdot 8$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 8$	$8 \cdot 0$	8.0	7•3	$6 \cdot 1$	$5 \cdot 2$	$4 \cdot 8$	$5 \cdot 1$	$5 \cdot 8$	6.5	$7 \cdot 1$	$7 \cdot 7$	$7 \cdot 9$	7-8	$7 \cdot 8$	$7 \cdot 9$	$7 \cdot 8$	$8 \cdot 0$	$7 \cdot 9$	7-8	7-2
May	$8 \cdot 0$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 9$	$8 \cdot 0$	$8 \cdot 1$	$7 \cdot 9$	$7 \cdot 3$	6.2	$5 \cdot 5$	$5 \cdot 3$	$5 \cdot 8$	$6 \cdot 3$	$6 \cdot 8$	7-3	$7 \cdot 9$	$8 \cdot 0$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 8$	$7 \cdot 9$	$8 \cdot 0$	$7 \cdot 9$	8.0	$7 \cdot 4$
June	$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	7-5	$7 \cdot 6$	7.7	$7 \cdot 5$	$6 \cdot 9$	6.2	$5 \cdot 6$	$5 \cdot 3$	$5 \cdot 4$	$5 \cdot 8$	$6 \cdot 4$	6.9	7-4	$7 \cdot 6$	7-6	$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	7-6	$7 \cdot 5$	$7 \cdot 0$
July	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	7-6	$7 \cdot 7$	7-5	7-0	$6 \cdot 4$	$5 \cdot 7$	5.4	$5 \cdot 6$	$5 \cdot 8$	$6 \cdot 3$	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 6$	7-4	$7 \cdot 4$	7-4	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 0$
Aug.	7.7	$7 \cdot 7$	7-6	$7 \cdot 7$	76		$7 \cdot 8$	$7 \cdot 7$	$7 \cdot 2$	$6 \cdot 4$	$5 \cdot 8$	$5 \cdot 7$	$5 \cdot 8$	$6 \cdot 2$	6.8	7-4	7-6	$7 \cdot 7$	$7 \cdot 6$	$7 \cdot 6$	7-6	$7 \cdot 6$	$7 \cdot 7$	7•7	7-7	$7 \cdot 2$
Sept.	$7 \cdot 4$	$7 \cdot 4$	$7 \cdot 4$	$7 \cdot 4$	7.4	$7 \cdot 4$	7-7	$7 \cdot 6$	7-0	6.0	$5 \cdot 4$	5.2	$5 \cdot 5$	6.1	6.8	$7 \cdot 2$	7-4	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 4$	$7 \cdot 4$	7.4	7.5	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 0$
Sumauer Means	7-7	$7 \cdot 7$	$7 \cdot 6$	77	$7 \cdot 6$	7-7	7•8	7•7	7-1	$6 \cdot 2$	$5 \cdot 5$	5.3	$5 \cdot 5$	$6 \cdot 0$	$6 \cdot 6$	7-1	$7 \cdot 6$	7-7	7-6	7.6	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 7$	7-7	$7 \cdot 7$	7-1

TABLE LVII.—Diurnal Inequality of the Dip at Tonngoo in 1922 (deduced from TABLE LVI).

Bours	0	1	3	8	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0
Jan.	+ $0 \cdot 4$	+0.3	+0.3	+	+0.3	+0.2	+0.2	0							$-0.5$	$\cdot 1$	+0.2	+0.2	+0.2	+0.3	+0.8	- 4	$0 \cdot 3$		
F'eb.			$+0.4$	+0.3	+0.3	+0.3	+0.2	+0.1	-0.3	. 9	-1.3	5	-1-3		2	0	+0.2	- 2	$+0.2$	. 4	5	. 4	. 5	. 5	$+0.4$
Mar.	$+0.7$		+07	$+0 \cdot 5$	+0.5	+0.5	+0.5	+0.7	+0.3	-0.6	1.4	. 1	-2.4	-1.7	0.9	- 1	+0.2	+0.3	+0.2	+0.4	+0.4	$+0.5$	+0.7	- 6	6
Oct.	+ $0 \cdot 7$	+0.6	+ $0 \cdot 6$	$+0 \cdot 6$	+0.4	+0.4	+0.5	$+0 \cdot 5$	0	. 8	-1.4	. 8	. 8	-1•1	-0.4	$0 \cdot 2$	$+0.3$	+0.2	+0.4	+0.4	+0.6	+0.6	+0.6	+0.7	$+0 \cdot 6$
Nov.	+0.3	+0		+0.1	+0.1	+0.1	+0.1	+0.1	-0.1	4	-0.8		-1.0	7	-0.5		0	+0.1	$+0.3$	+0.4	+0.4	$0 \cdot 4$	+0.5	+0.5	+0.2
Dec.	+ $0 \cdot 4$	+ $0 \cdot 3$	$+0 \cdot 3$	+0.3	+0.2	+0•2	+	0					-1.0	-0.7		-0.1	0	+0.2	+0.3	+0.3	+0.4	$0 \cdot 3$	$+0.3$	+0.4	0.
Wintar   Meana	+0.5	+0.4		+0.4	+ $0 \cdot 3$	+0•3	+0.3	+0.2	-0.1		-1.1	-1	-1.5			$-0 \cdot 1$	+0.1	+0.2	+0.3	+0.4	+0.4	+0.4	+0.5	+0.5	- 4
April	$+0 \cdot 6$	$+0.8$	$+0 \cdot 6$	$+0 \cdot 7$	$+0 \cdot 7$	+0.6	+ 0.8	+0.8	$+0 \cdot 1$	-1.1	-2.0	-2.4	-2.1	-1.4	-0.7	$-0 \cdot 1$	+0.5	$+0 \cdot 7$	$+0.6$	+0.6	$+0.7$	+0.6	$+0.8$	+0.7	+0.6
May	$+0.6$	$+0.5$	+0.5	$+0 \cdot 5$	+0.5	+0.6	+0.7	+ $0 \cdot 5$	-0.1	-1.2	-1.9	-1.9	-1.6	-1.1	-0.6	$-0.1$	+0.5	+0.6	+0.5	+0.5	$+0.4$	+0.5	+0.6	+0.5	+
June	$+0 \cdot 5$	$+0.5$	+0.5	+0.5	+0.5	$+0.6$	+0.7	+ $0 \cdot 5$	-0.1	-0.8	-1.4	-1.7	-1.6	-1.2	-0.6	$-0 \cdot 1$	+0.4	+0.6	$+0.6$	+ $0 \cdot 5$	+0.5	+0.5	+0.5	+0.6	+0.5
Jouly	$+0 \cdot 5$	+0.4	+0.5	$+0 \cdot 5$	$+0 \cdot 5$	+0.6	+0.7	$+0.5$	0	-0.6	-1.3		-1.4	-1.2	7	-0.1	+0.3	$+0 \cdot 6$	+0.4	+0.4	+0.4	+0.6	+0.6	$+0 \cdot 5$	+0.6
Ang.	+0.5	+0.5	+0.4	+0.5	+0.4	+0.5	+ $0 \cdot \epsilon$	+0.5	0	-0.8	-1.4	5	-1.4	-1.0	-0.4	+0.2	+0.4	+0.5	+0.4	+0.4	+0.4	+0.4	+0.5	+0.5	+0.5
Sept.	$+0 \cdot 4$	+0.4	+0	+ 0	+0.4	+0.6	+0•7	+0	0	0	-1.6			-	-0.2	+0.2	+0.4	+0.5	+0.4	+0.4	+0.4	+0.4	+0.5	+0.5	+0.4
Summer   Means	+0.6			+0.6	+0.5	+ $+0 \cdot 6$	+ $0 \cdot 7$		0		-1.6	-1.8	\|-1.6	-1.1	-0.5	0	+0.5	$+0 \cdot 6$	$+0 \cdot 5$	$+0.5$	+0.5	+0.5			




	人尺	$\stackrel{\text { F }}{\text { ¢ }}$		9
－		发		¢
๕		\％	\％\％\％\％¢ \％	¢
冈	珹	융		宮
ส		\％̈＇	閥	管
\＆	－ $\mathrm{Cl}_{\infty}^{\text {¢ }}$	\％	¢	
$\stackrel{9}{2}$	蚛	芯		8
$\stackrel{\sim}{\sim}$		骨	¢	\％
$\stackrel{1}{2}$	－哭	\％	荗	发
2	佩产	¢	O－8	\％
19	入i	\％	斝	－
\＃	入呂	\％	®\％	
$\stackrel{\sim}{\square}$	｢	\％	骨	\％
$\begin{array}{\|l\|} \hline 8 \\ \hline 0.0 \end{array}$	入凩	$\stackrel{9}{\sigma}$	茄遃	$\stackrel{\infty}{\sigma}$
$=$		荺		获
$\bigcirc$		$\stackrel{\circ}{\circ}$		宕
$\infty$	入i	菅		¢
$\infty$	入了	呂		贯
1		谷	¢ \％\％	\％
$\bigcirc$	－	¢	閙	8
10	－			$\stackrel{8}{8}$
＊		\％	萝	$\stackrel{\square}{8}$
$\infty$	入－	产	䍏適	魚
$\cdots$		\％		骨
$\rightarrow$		$\stackrel{\rightharpoonup}{\circ}$	－	\％
－		曆		荌
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$				

NoTe－Figares in thick type represent the maximam and minimum values daring the month．

$\bigcirc$	$\cdots$	$*$ -1	$\stackrel{N}{\sim}$	$\stackrel{\infty}{\sim}$	0 1	$\stackrel{n}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\text { C－1 }}$	$\stackrel{C 0}{1}$	$\stackrel{0}{1}$	0 1	$\stackrel{\rightharpoonup}{-1}$	$\stackrel{7}{7}$	m r 1
ก	ス	$\stackrel{\text { N }}{\text {－1 }}$	0 1 1	$\stackrel{\text { N }}{\sim}$	$\underset{1}{7}$	$\stackrel{\text { N }}{\substack{1 \\ 1}}$	H 1 1	$\stackrel{1}{1}$	$\stackrel{\text { ¢ }}{\substack{1}}$	$\stackrel{\sim}{1}$	－ 1	$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { N }}{\text {＋}}$	$\stackrel{\text { ¢ }}{\substack{7 \\ 1}}$
N	$\cdots \stackrel{91}{1}$	$\stackrel{H}{1}$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\underset{\sim}{\underset{\sim}{7}}$	$\stackrel{7}{1}$	$\stackrel{\text { N }}{\text {－}}$	$\stackrel{4}{\sim}$	$\stackrel{N}{\wedge}$	$\begin{gathered} 0 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & \mathbf{H} \\ & 1 \end{aligned}$	$\begin{gathered} \text { H } \\ \text { I } \end{gathered}$	$\underset{\sim}{\underset{\sim}{n}}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\stackrel{10}{7}$
ה	rir	$\stackrel{\oplus}{1}$	$\begin{gathered} \text { 으N } \\ 1 \end{gathered}$	$\stackrel{9}{\mathrm{a}}$	$\underset{1}{9}$	$\underset{1}{\mathbf{m}}$	$\stackrel{10}{10}$	$\begin{gathered} \text { O } \\ 1 \end{gathered}$	$\begin{gathered} 0 \\ 1 \\ 1 \end{gathered}$	$\underset{\sim}{\mathrm{I}}$	$\underset{1}{\underset{1}{+}}$	$\stackrel{\infty}{1}$	$\stackrel{\text { H }}{\substack{1 \\ \hline}}$	$\stackrel{\ominus}{-1}$
앙	$\times \frac{0}{1}$	$\stackrel{\text { N }}{\mathbf{1}}$	$\stackrel{\mathrm{N}}{\mathrm{I}}$	$\underset{1}{9}$	$\stackrel{0}{1}$	$\underset{1}{\sim}$	$\underset{1}{7}$	$\stackrel{1}{1}$	$\stackrel{\sim}{\sim}$	$\stackrel{m}{1}$	$\underset{\sim}{\text {＋}}$	$\stackrel{\sim}{1}$	$\underset{\sim}{\sim}$	$\stackrel{4}{7}$
$\stackrel{\square}{-1}$	${ }^{\infty}$	$\stackrel{\Im}{7}$	$\stackrel{+}{1}$	$\stackrel{\infty}{1}$	＋	$\underset{1}{7}$	$\stackrel{\sim}{\square}$	$\infty$ $\sim$ 1	$\cdots$	$\stackrel{10}{1}$	$\stackrel{1}{1}$	$\cdots$	$\stackrel{9}{1}$	$\stackrel{+}{\square}$
$\stackrel{\infty}{\sim}$			응	$\underset{1}{\infty}$	$\stackrel{\text { © }}{\underset{1}{1}}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\xrightarrow{1}$	$\stackrel{10}{1}$	$\stackrel{10}{1}$	$\stackrel{10}{1}$	$\underset{\sim}{\square}$	$\xrightarrow{9}$	$\stackrel{-}{1}$	$\xrightarrow{4}$
$\pm$				$\underset{\sim}{\sim}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \sigma \\ & 1 \end{aligned}$	$\underset{\sim}{\text { H }}$	$\stackrel{20}{1}$	$\stackrel{1}{1}$	$\stackrel{10}{1}$	$\stackrel{\sim}{\sim}$	$\stackrel{9}{9}$	$\stackrel{+}{\square}$
0		$\stackrel{\infty}{1}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \sigma \\ & 1 \end{aligned}$	$\begin{aligned} & +1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	1	$\stackrel{9}{1}$	$\stackrel{\sim}{\sim}$	$\stackrel{+}{\sim}$	$\underset{1}{7}$	$\overrightarrow{7}$	$\stackrel{-}{7}$	$\stackrel{\text { N }}{\sim}$
20		$1$	$1$		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	N 1			$\begin{gathered} \hline \mathbf{N} \\ 1 \end{gathered}$	$\begin{aligned} & \mathbf{N} \\ & + \end{aligned}$	$\begin{gathered} \text { م1 } \\ \hline \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	
$\stackrel{+}{\square}$	${ }^{+}+$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\stackrel{10}{+}$	$+$	$\stackrel{9}{+}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$	$\infty$ +	0 + +	¢ +	－	$\frac{18}{4}$	10 +	7 +	＋ +
$\stackrel{9}{9}$	$\lambda$	$\begin{aligned} & +1 \\ & + \end{aligned}$	¢ + +	N + +	+ + +	0 - +	-1 +	¢ +	O + +	＋ + +	N +	O +	$\stackrel{+}{\square}$	N + +
$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 7 \end{aligned}$	＋	$\begin{aligned} & \text { ro } \\ & \text { + } \end{aligned}$	$\begin{aligned} & \text { W } \\ & + \end{aligned}$	$\begin{aligned} & \text { + } \\ & + \end{aligned}$	$\begin{gathered} \infty \\ +1 \\ + \end{gathered}$	$\begin{aligned} & 6 \\ & 01 \\ & + \end{aligned}$	$\begin{aligned} & e \\ & + \\ & + \end{aligned}$	い +	$\begin{aligned} & \text { f } \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \text { 毋 } \\ & + \end{aligned}$	$\begin{aligned} & \boldsymbol{N} \\ & + \end{aligned}$	＋1 +	$\begin{aligned} & \text { H } \\ & + \end{aligned}$	0 + +
$\cdots$	$\xrightarrow[+]{+}$	$\begin{aligned} & 9 \\ & + \\ & + \end{aligned}$	9 +	8 1	¢ + +	40 0 + +	10 + +	$\overrightarrow{0}$ +	0 + +	N1 +	－	¢ +	$\infty$ + +	18 +
0	$\cdots \stackrel{10}{+1}$	$\begin{aligned} & 9 \\ & + \end{aligned}$	$\begin{aligned} & \text { O } \\ & + \end{aligned}$	$\begin{aligned} & 19 \\ & + \end{aligned}$	$\begin{aligned} & \sigma_{\mathrm{N}} \\ & + \end{aligned}$	$\begin{aligned} & \boldsymbol{\sigma} \\ & \mathrm{K} \\ & + \end{aligned}$	$\begin{aligned} & 61 \\ & +1 \\ & + \end{aligned}$	＋	$\begin{aligned} & \text { r } \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & + \end{aligned}$	$\begin{aligned} & \rho \\ & + \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & +0 \\ & + \end{aligned}$	$\begin{aligned} & \text { F } \\ & + \end{aligned}$	N + +
0	$\begin{array}{r} 69 \\ + \\ + \end{array}$	$\begin{aligned} & +9 \\ & +0 \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & 0 \\ & 0 \\ & + \\ & + \end{aligned}$	$\begin{aligned} & 9 \\ & +1 \\ & + \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & + \end{aligned}$	N + +	＋	$\vec{\sigma}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \\ & + \end{aligned}$	$\frac{\sigma}{+}$	$\begin{aligned} & e \infty \\ & \stackrel{\oplus}{N} \\ & + \end{aligned}$	$\infty$ + +	N + +
$\infty$		$\stackrel{-2}{+}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$\stackrel{-7}{+}$	＋	$\infty$ +	O +	$\stackrel{-}{+}$	0 + +	$\infty$ +	1 +	0 +	c + +	$\begin{aligned} & 0 \\ & + \end{aligned}$
$\cdots$		I	$\stackrel{-1}{1}$	－	$\stackrel{\sim}{1}$	1	15			1	＋ 1	$\cdots$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\omega$
0		$\infty$	$\frac{\infty}{1}$	$\stackrel{01}{1}$	$1$		$\xrightarrow{-1}$			$\omega$	$\stackrel{\square}{0}$	5		0 1 1
4		$\begin{gathered} \infty \\ 1 \end{gathered}$	$\stackrel{10}{1}$	$\underset{1}{\underset{1}{1}}$	$\begin{gathered} \infty \\ 1 \end{gathered}$		9 1			0	－1	0	0 1	1
＊		$\begin{aligned} & 0 \times \\ & 1 \end{aligned}$	$\frac{10}{1}$	$\stackrel{11}{1}$	0		$\cdots$		$\stackrel{\infty}{1}$	1	$\underset{\sim}{\text {－1 }}$	$\xrightarrow{0}$	9 1 1	＋1
9		0	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{7}$	$\cdots$		$\xrightarrow{9}$		$\stackrel{\text { は }}{\text { ¢ }}$	0 1	$\stackrel{\sim}{1}$	$\stackrel{-1}{1}$	$\stackrel{7}{1}$	$\stackrel{4}{1}$
N		$\stackrel{3}{1}$	$\frac{12}{1}$	$\stackrel{\rightarrow}{7}$	$\cdots$		$\stackrel{7}{7}$		$\stackrel{9}{1}$	0	－	$\stackrel{1}{1}$	$\underset{1}{7}$	$\stackrel{4}{1}$
$\cdots$		$\stackrel{-1}{1}$	$\stackrel{9}{7}$	$\stackrel{\rightharpoonup}{7}$	1		$\stackrel{9}{1}$		$\stackrel{n}{1}$	$\stackrel{-1}{1}$	$\stackrel{-1}{7}$	$\stackrel{\mathrm{H}}{1}$	$\stackrel{\text { ¢ }}{1}$	$\stackrel{1}{1}$
0		$\stackrel{0}{0}$	91 1	$\stackrel{\square}{1}$	$\stackrel{+}{\square}$		$\stackrel{10}{10}$		$\stackrel{9}{1}$	$\stackrel{\Im}{1}$	$\cdots$	$\stackrel{9}{1}$	$\stackrel{+}{1}$	$\stackrel{1}{1}$
$\begin{aligned} & \text { 胃 } \\ & \text { 品 } \\ & \text { R } \end{aligned}$		－0	式	させ	$\begin{aligned} & B_{4}^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O. } \\ & 0 . \end{aligned}$	$\begin{aligned} & 5 \\ & \$ \\ & 8 \\ & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { © } \\ & \text { 吕 } \\ & \mapsto \end{aligned}$	$\stackrel{\Delta}{\square}$	$\begin{gathered} 00 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \end{aligned}$	


งกษว 1	$\cdots{ }^{+\infty}$	$8$	8	8	Fob	$\underset{8}{\infty}$	\%	$\begin{aligned} & \text { N } \\ & \hline 8 \end{aligned}$	\％	®	\％	¢	$\stackrel{\infty}{8}$	\％
$\bigcirc$	+i	핑	$\stackrel{\infty}{\circ}$	$\underset{\sim \rightarrow}{\dot{-1}}$	－	$\stackrel{8}{8}$	－	க	$\stackrel{19}{8}$	$\begin{aligned} & 10 \\ & 80 \\ & \hline \end{aligned}$	\％	${ }_{0}^{10}$	$\xrightarrow[19]{19}$	8
$\stackrel{\square}{\sim}$	$\gamma{\underset{O}{0}}_{0}^{0}$	苟	$8$	$\underset{\sim=1}{\infty}$	$8$	$\underset{\sim}{0}$	5	$\stackrel{\infty}{\circ}$	\#	¢	$\frac{8}{8}$	$\stackrel{\nabla}{0}$	19 0 1	8
N	re.	$\stackrel{\otimes}{\mathrm{O}}$	$\underset{8}{8}$	-	망	$8$	$\stackrel{0}{9}$	$\stackrel{\infty}{8}$	$\stackrel{\infty}{0_{0}}$	\％	¢	$\underset{\substack{\text { N } \\ \text { Hi }}}{ }$	$\stackrel{9}{9}$	$\stackrel{\infty}{\circ}$
－1	入ion	$\stackrel{\infty}{\delta}$	$\underset{8}{7}$	$8$	$\begin{aligned} & \infty \\ & 8 \end{aligned}$	$\stackrel{8}{8}$	$\begin{aligned} & 49 \\ & 98 \end{aligned}$	$\stackrel{10}{8}$	だ	স্ত	$\mathscr{8}$	$\stackrel{9}{9}$	$\stackrel{6}{8}$	8
－	+	$\stackrel{\text { N }}{\underset{\circ}{8}}$	¢	$\begin{aligned} & \mathbf{o} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 10 \\ & \text { ロ̀ } \end{aligned}$	$\begin{aligned} & 10 \\ & 8 \\ & \hline \end{aligned}$	\％	$\stackrel{\infty}{\circ}$	$\begin{aligned} & 19 \\ & 8 \\ & \hline 8 \end{aligned}$	$\stackrel{\text { N }}{\mathbf{O}}$	$\stackrel{-6}{6}$	－8
$\stackrel{0}{-1}$	入每	'H	$\underset{8}{8}$	$8$	$\stackrel{\oplus}{8}$	$\underset{8}{\infty}$	$\stackrel{\infty}{8}$	8	$\stackrel{\square}{8}$	잉	Hi	$\underset{\sim}{\hat{O}}$	$\underset{\sim}{-}$	$\bigcirc$
$\pm$		8	O8	$\mathscr{O}$	$\xrightarrow{19} 8$	$\stackrel{\leftarrow}{8}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \end{aligned}$	$\stackrel{N}{8}$	$\stackrel{-1}{8}$	$\stackrel{\text { g }}{8}$	$8$	$\begin{aligned} & 8 \\ & \hline 8 \end{aligned}$	8   8   8	8
$\cdots$	$+\underset{\sim}{\infty}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & 10 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 19 \\ & 8 \\ & \hline \end{aligned}$	8	$\begin{aligned} & \mathbf{\sim} \\ & \hline 8 \end{aligned}$	$\dot{8}$	$\stackrel{4}{8}$	$\stackrel{\oplus}{8}$	-	\%	¢
$\stackrel{0}{0}$	入㐭	$\stackrel{10}{\circ}$	$\stackrel{10}{\infty}$	10	$\stackrel{9}{8}$	$\stackrel{\infty}{8}$	$\stackrel{\mathbf{N}}{\mathbf{8}}$	$\stackrel{0}{8}$	8	$\underset{8}{\square}$	$\stackrel{0}{8}$	$\stackrel{\infty}{0}$	앙	$\stackrel{0}{8}$
19	入-	$\underset{\delta}{\infty}$	${ }_{0}^{\infty}$	か	$\begin{aligned} & \text { ¢ } \\ & \hline 8 \end{aligned}$	户̈	앙	$\infty$	$\begin{aligned} & 10 \\ & 0 \\ & 8 \end{aligned}$	$\stackrel{8}{8}$	$\underset{8}{\sigma}$	8	$\stackrel{\infty}{8}$	88
$\pm$	$\cdots \frac{8}{5}$	$\stackrel{\infty}{\delta}$	$\stackrel{8}{8}$	$\begin{aligned} & \infty \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 81 \\ & 8 \end{aligned}$	$\bar{\theta}$	$\stackrel{F}{8}$	$0$	$\frac{\infty}{1}$	吕	$\stackrel{1}{\infty}$	$\stackrel{\mathbf{0}}{8}$	$\stackrel{19}{8}$	\％
$\stackrel{\square}{-}$	$+\frac{\infty}{\infty}$	$\underset{0}{\boldsymbol{H}}$	$\stackrel{7}{5}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\underset{O}{F}$	$\stackrel{9}{8}$	$\begin{aligned} & \text { H } \\ & \hline 8 \end{aligned}$	$\underset{8}{0}$	$\stackrel{9}{5}$	8	$\underset{O}{\boldsymbol{O}}$	$\begin{aligned} & \mathscr{O} \\ & \hline 8 \end{aligned}$	＋10	\％
$\begin{gathered} 18 \\ 0 \\ 8 \\ \hline Z \end{gathered}$	2	$5$	$0$	$5$	$10$	が	$\stackrel{7}{8}$	8	$\begin{aligned} & 60 \\ & 8 \end{aligned}$	${ }_{6}^{e}$	0	0	N	5
$\cdots$	$\therefore \theta$	$\stackrel{\underset{\sim}{\theta}}{\boldsymbol{\theta}}$	${ }_{5}^{6}$	$\stackrel{10}{5}$	9	N	$\stackrel{8}{8}$	$5$	N	$\stackrel{\infty}{\circ}$	$\square_{0}^{-1}$	$\underset{0}{6}$	$\stackrel{01}{6}$	0
응	$-\frac{N}{6}$	$5$	©	$\begin{aligned} & \mathbf{N} \\ & \hline 0 \end{aligned}$	8	ס	¢	$\underset{8}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	+is	ọ	$\stackrel{N}{\infty}$	क	－
©	$+\infty$	$\begin{aligned} & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	용	o	$10$	$\begin{aligned} & \infty \\ & \hline 8 \end{aligned}$	og	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	88	$\stackrel{8}{8}$	용		0 0 0
$\infty$	$\cdots \underset{0}{\infty}$	$\stackrel{N}{\circ}$	$\begin{aligned} & 10 \\ & \stackrel{8}{8} \end{aligned}$	$\underset{\sim}{-1}$	g	$8$	太	$\frac{\stackrel{1}{5}}{5}$	$10$	$\stackrel{9}{8}$	み'	앙	op	${ }_{0}^{6}$
5	入o	$\stackrel{\leftrightarrow}{8}$	$\stackrel{\infty}{8}$	$e_{i=1}^{e}$	$\begin{aligned} & \circ \\ & \hline 8 \end{aligned}$	$8$	$\stackrel{1}{8}$	$\stackrel{1}{\circ}$	$\stackrel{\theta}{8}$	$\stackrel{9}{8}$	$\stackrel{9}{\mathrm{O}}$	今	$\stackrel{\circ}{9}$	9
$\omega$	$\lambda \underset{6}{\infty}$	$\begin{aligned} & 10 \\ & 8 \\ & 8 \end{aligned}$	$\stackrel{5}{8}$	$\underset{\sim}{\circ}$	8	$\stackrel{\underset{1}{-1}}{ }$	8	$\stackrel{\text { en }}{\underset{\sim}{2}}$	g	E	$\underline{6}$	三	$\stackrel{\infty}{\infty}$	$\stackrel{+}{*}$
10	$\therefore \stackrel{\infty}{6}$	$\stackrel{9}{8}$	$\begin{aligned} & \infty \\ & \hline 8 \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	O	$\stackrel{\circ}{0}$	$\begin{aligned} & \infty \\ & \hline 8 \end{aligned}$	$8$	ios	$\stackrel{1}{8}$	\％	$\stackrel{\infty}{\circ}$	¢	$\underset{-}{\sigma}$
$\nabla$	人	$\begin{aligned} & 9 \\ & \hline 8 \\ & \hline 8 \end{aligned}$	$\stackrel{0}{8}$	압	$\stackrel{8}{8}$	$\underset{\sim}{0}$	$\stackrel{\circ}{8}$	$\frac{8}{8}$	$\stackrel{19}{8}$	$8$	$5$	$\stackrel{N}{0}$	$0$	$8$
0	$\lambda_{\stackrel{\infty}{\infty}}^{\infty}$	$8$	$\stackrel{\circ}{\circ}$	$\xrightarrow[1]{9}$	¢	－18	$\begin{aligned} & \infty \\ & \hline 8 \\ & \hline \end{aligned}$	$8$	망	¢88	「	$\bigcirc$	$\underset{\sim}{\square}$	－8
N	$\cdots \frac{1}{\infty}$	$\begin{aligned} & 10 \\ & 8 \\ & \hline 8 \end{aligned}$	\$	©	을	$\stackrel{\text { N }}{\stackrel{1}{1}}$	$8$	$8$	B	$\stackrel{N}{6}$	$\stackrel{\infty}{8}$	$\stackrel{-}{-1}$	＇989	8
－	$\times{ }_{\infty}^{\infty}$	$\stackrel{0}{8}$	$\stackrel{s}{8}$	잉	－	$\stackrel{9}{9}_{-1}$	$8$	8	8	¢	$\stackrel{\infty}{8}$	COP	$\stackrel{\infty}{0}$	－9
0	$\lambda_{\infty}^{\infty}$	ت゙	$8$	$\underset{-}{\mathbf{O}}$	$\underset{\sim}{E}$	$\stackrel{\underset{0}{1}}{\underset{1}{1}}$	$\stackrel{\infty}{8}$	$8$	${ }_{8}^{10}$	8	$\stackrel{9}{8}$	$\stackrel{10}{0}$	\＃	8
	$\begin{gathered} \text { di } \\ \stackrel{y}{*} \end{gathered}$	$\begin{aligned} & \text { O } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { Hi } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{r} \dot{0} \\ \mathbf{0} \end{array}$	$\begin{aligned} & 8 \\ & \vdots \\ & 7 \\ & \hline \end{aligned}$	8்		$\begin{aligned} & \vec{a} \\ & \text { a } \end{aligned}$	宊	品	$\stackrel{B}{B}$	$$		

Note－Figures in thick type represent the maximam and minimum vaiues during the month．

0	$\cdots$	$+$	$+$	＋	$\infty$	+ +	+ +	18 +		$\stackrel{+}{+}$	18 +	$\infty$ +	0 +	$+$		0 +
\％		＋	$\stackrel{+}{+}$	$+$	$+$	$\infty$ +		+ + +		$+$	$\begin{aligned} & +1 \\ & + \end{aligned}$	$\begin{aligned} & +4 \\ & + \end{aligned}$	10 +	+ +		10 +
¢			＋ + +	$\bigcirc$	$\cdots$	+ +	$+$	+ + +		$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	+ +			
$\stackrel{\sim}{6}$	$+$				$\begin{aligned} & + \\ & + \end{aligned}$		$+$	+ + +		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\infty$	$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \text { ev } \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & 20 \\ & + \end{aligned}$	¢ +
8					$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & F \\ & + \end{aligned}$	$\begin{aligned} & -+ \\ & + \end{aligned}$	+ + +			$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & \digamma \\ & + \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & + \end{aligned}$	$\infty$	N +
$\stackrel{\sim}{-1}$				$+$				$\bigcirc$			$\begin{aligned} & -1 \\ & + \end{aligned}$			$\begin{aligned} & \text { ~ } \\ & + \end{aligned}$	$\begin{aligned} & \text { ■ } \\ & + \end{aligned}$	+ +
$\pm$				$\begin{gathered} \mathbf{H} \\ \mathbf{1} \end{gathered}$		$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{array}{r} \mathbf{r} \\ \mathbf{I} \end{array}$	$\underset{1}{-1}$			$\stackrel{+}{+}$		$\begin{aligned} & \mathbf{0 w} \\ & + \end{aligned}$	$\bigcirc$	$\begin{aligned} & - \\ & + \end{aligned}$	$\begin{aligned} & \text { H } \\ & + \end{aligned}$
$\dagger$				$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} H \\ 1 \end{gathered}$	1	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\underset{\mathbf{c}}{\mathbf{o}}$			$\begin{aligned} & \text { © } \\ & + \end{aligned}$	$\begin{aligned} & \boldsymbol{\omega} \\ & + \end{aligned}$	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$\begin{aligned} & \text { N } \\ & + \end{aligned}$		＋
9	$\cdots$		4 +	0	$\cdots$	$\cdots$	＋	$\begin{array}{r} 7 \\ 1 \end{array}$		－	－	$\begin{aligned} & \text { ev } \\ & + \end{aligned}$	$\begin{aligned} & +\infty \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & \hline \end{aligned}$	$\overrightarrow{+}+$	+ + +
$\stackrel{\square}{\sim}$		1		1	$\stackrel{1}{1}$	$\stackrel{+}{1}$	$\cdots$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$1$	$1$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\bigcirc$	$\bigcirc$	$\stackrel{\sim}{1}$
$\cdots$	－	1		1	$\stackrel{0}{1}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$1$	$\stackrel{\infty}{1}$		$\underset{1}{9}$	$\stackrel{\mathbf{N}}{\stackrel{\rightharpoonup}{1}}$	$1$	$1$	$1$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\infty$
$\xrightarrow{\circ}$		$1$		$\stackrel{9}{1}$	$\stackrel{+}{\underset{1}{0}}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$		$\stackrel{8}{8}$	$\stackrel{\rightharpoonup}{1}$	$\stackrel{9}{\mathbf{1}}$	$\begin{aligned} & 9 \\ & \hline 1 \end{aligned}$	$\begin{gathered} \underset{\sim}{1} \\ \mathbf{l} \end{gathered}$	$\underset{1}{\infty}$	$\xrightarrow{H}$
$\begin{array}{r} 98 \\ 8 \\ 4 \\ \hline \end{array}$	$\infty$		$7$	$\underset{1}{\mathbf{O}}$	$\begin{aligned} & 7 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 1 \end{gathered}$	$\begin{aligned} & \text { n } \\ & 1 \end{aligned}$	$\underset{\mathrm{I}}{\mathrm{o}}$		$\underset{1}{\infty} \underset{1}{\infty}$	$\underset{1}{\infty}$	$\stackrel{9}{1}$	$\stackrel{\oplus}{1}$	$\stackrel{\infty}{\infty}$	ה	$\stackrel{ \pm}{1}$
$\cdots$		1	$\underset{\sim}{2}$	$\underset{1}{7}$	$\underset{i}{7}$	$\overrightarrow{1}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\underset{i}{\sim}$		$\underset{1}{0}$	$\underset{1}{9}$	$\stackrel{\pi}{1}$	$\underset{\sim}{\oplus}$	$\begin{gathered} \text { O} \\ \text { in } \end{gathered}$	$\begin{gathered} \oplus \\ \hline 1 \end{gathered}$	$\stackrel{\infty}{\sim}$
－		$7$	$\stackrel{F}{1}$	$\begin{aligned} & \hline \sigma \\ & 1 \end{aligned}$	$\underset{1}{\mathrm{~A}}$		$\begin{gathered} 60 \\ 1 \end{gathered}$	$\begin{aligned} & 0 \\ & \hline 1 \end{aligned}$			$\begin{gathered} \infty \\ \mathbf{i} \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\infty$	$\underset{\sim}{\sim}$	$\stackrel{N}{i}$	0
$\boldsymbol{\infty}$		1 －		$\xrightarrow{-1}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & \boldsymbol{H} \\ & + \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$1$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 69 \\ 1 \end{gathered}$	$\cdots$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\infty$	PO	$10$
$\infty$	＋	$+$	1		$+$	$\begin{aligned} & N \\ & + \end{aligned}$	$\bigcirc$	$\stackrel{+}{+}+$				$+$		$\bigcirc$	$\bigcirc$	+ + +
－		＋	+ +	＋ +	$\xrightarrow{+}$		$\begin{aligned} & \text { © } \\ & + \end{aligned}$	+ +		$\stackrel{9}{4}$	$\begin{aligned} & \text { o } \\ & + \end{aligned}$	$+$	$\begin{aligned} & \text { ロ } \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	＋
co	行			5	$\begin{aligned} & 9 \\ & + \end{aligned}$	$\infty$	$\begin{aligned} & + \\ & + \end{aligned}$	15 +		$+$	$\begin{aligned} & \rho \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\stackrel{\text { 블 }}{+}$	$\begin{aligned} & \mathrm{O} \\ & + \end{aligned}$	$\stackrel{+}{+}$
18	$\cdots$	$+$		$-0$	$+$			18 +		$+$	$+$	$\begin{aligned} & 108 \\ & + \end{aligned}$	$\begin{aligned} & 15 \\ & + \end{aligned}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	+ +
＋				$\begin{aligned} & e 0 \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 81 \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	＋		$\begin{aligned} & \mathrm{F} \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$\begin{aligned} & +1 \\ & + \end{aligned}$	$\begin{aligned} & 00 \\ & + \end{aligned}$		$+$	＋
$\infty$		$+$		$\omega$	$\sigma$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & +1 \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$		$\begin{aligned} & \infty \\ & + \end{aligned}$	$+$	$\begin{aligned} & +1 \\ & + \end{aligned}$	$+$	$+$	$+$	$\stackrel{+}{+}$
$\bigcirc$		$+$			$\mathrm{O}$	$+$	+ +	$\begin{aligned} & 6 \\ & + \end{aligned}$		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 6 \\ & + \end{aligned}$	$\begin{aligned} & 6 \\ & + \end{aligned}$	$+$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$+$
$\rightarrow$				$+$			$\begin{aligned} & \infty \\ & + \end{aligned}$	5 + +		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$\begin{aligned} & 7 \\ & + \end{aligned}$	$+$	$+$	$\stackrel{+}{+}$	$+$
0		$+$		$+$	＋	＋	$+$	4 + +		$+$	$\cdots$	$+$	$+$	$+$	+ + +	+ + +
	${ }^{1}$	$\stackrel{\text { B }}{\stackrel{1}{3}}$	$\dot{\mathbf{0}}$	y્યું	ثै	$\begin{aligned} & \stackrel{8}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \hline 日 \end{aligned}$	$\begin{gathered} 90 \\ 9 \\ 9 \\ 0 \end{gathered}$		$\begin{aligned} & \vec{Z} \\ & \frac{0}{4} \end{aligned}$	$\stackrel{s}{3}$	$\stackrel{8}{8}$	吕		$\begin{gathered} \dot{0} \\ \underset{\sim}{0} \\ i=1 \end{gathered}$	最最


Hoars	0	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0	鹿
Jan.		399	39.9	${ }^{39} 9$	398	$39 \cdot 9$	$39 \cdot 9$				38.3			$33 \cdot 8$			$39 \cdot 5$	$39 \cdot 4$	$39 \cdot 6$	$39 \cdot 6$	39.7	$39 \cdot 7$	39.8	$39 \cdot 9$	39	39
Feb.	40	$40 \cdot 6$			.10	$40 \cdot 5$	10.5				-	$137 \cdot 8$	38-4	39-4	$40 \cdot 3$	$10 \cdot 7$	$40 \cdot \varepsilon$	40	$40 \cdot 1$	40.2	$40 \cdot 3$	$40 \cdot 4$	$40 \cdot 3$	$40 \cdot 4$	40.4	40.0
Mar	$40 \cdot 7$	\$0				40	$10 \cdot 7$			$39 \cdot 6$	38.8				9	$39 \cdot 4$	$39 \cdot 7$	$39 \cdot 8$	$39 \cdot 9$	$40 \cdot 2$	$40 \cdot 4$	40.5	$40 \cdot 6$	$40 \cdot 7$	40.8	399
Oct.	41.1	41.2	41	$41 \cdot 2$		$41 \cdot 2$	41.3	2	40	39	$38 \cdot 6$	$37 \cdot 9$	38.0		3	$39 \cdot 9$	$40 \cdot 2$	$40 \cdot 3$	$40 \cdot 4$	$40 \cdot 6$	$40 \cdot 7$	40.8	40.9	$41^{\circ} 0$	$1 \cdot 1$	$40 \cdot 3$
Nov.	40	40	$40 \cdot 6$	$40 \cdot 6$	40	40	40		40	4	$40 \cdot 1$	$40 \cdot 0$	9	39.9	8	39.9	$40 \cdot 0$	40-0	$40 \cdot 2$	40. 3	$40 \cdot 5$	$40 \cdot 5$	40.6	$40 \cdot 7$	$40 \cdot 7$	$40 \cdot 3$
Dec.	40	$40 \cdot 9$	$40 \cdot 8$	$40 \cdot 8$		$40 \cdot 8$	$10 \cdot 8$	$40 \cdot 6$	40	40.0	39	39-6	39	$39 \cdot 8$	$39 \cdot 7$	$40 \cdot 0$	$10 \cdot 1$	$40 \cdot 2$	10.4	40.5	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 7$	40.8	40.4
Winter   Means	$40 \cdot 6$	40.7	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 5$	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 5$	$40 \cdot 2$	396	389	38.6	$38 \cdot 7$	$39 \cdot 1$	$39 \cdot 5$	$39 \cdot 9$	$40 \cdot 0$	$40 \cdot 0$	$40 \cdot 1$	40.2	$40 \cdot 4$	$40 \cdot 4$	$40 \cdot 5$	$40 \cdot 6$	$40 \cdot 6$	40
April	$40 \cdot 8$	$40 \cdot 9$	40.9	$40 \cdot 9$	$40 \cdot 8$	$40 \cdot 9$	41.2	41.0	$40 \cdot 4$	39	38.8	$37 \cdot 9$		38	$38 \cdot 8$	39.6	$40 \cdot 1$	$40 \cdot 2$	$40 \cdot 2$	$40 \cdot 2$	40.4	$40 \cdot 5$	$4 \cdot 7$	$40 \cdot 7$	40.7	$40 \cdot 0$
May	$40 \cdot 4$	40	40	40	$40 \cdot 4$	$40 \cdot 6$	40.7	40•7		4	. 8	. 0			38.7	$39 \cdot 4$	$39 \cdot 9$	$40 \cdot 1$	$40 \cdot 0$	40.0	$40 \cdot 0$	$40 \cdot 2$	$40 \cdot 2$	40.3	40.4	39.8
Jane	40.5	$40 \cdot 4$	40	40	40.4	40.5	$40 \cdot 8$	$40 \cdot 6$	$40 \cdot 3$	$39 \cdot 6$		$38 \cdot 1$			393	$39 \cdot 8$	$40 \cdot 3$	$40 \cdot 3$	$40 \cdot 1$	$40 \cdot 1$	$40 \cdot 2$	$40 \cdot 3$	$40 \cdot 3$	$40 \cdot 5$	40.4	0
Jaly	$40 \cdot 6$	$40 \cdot 7$	40.8	$40 \cdot 7$	$40 \cdot 2$	$39 \cdot 6$	$39 \cdot 3$	33.8	38	$39 \cdot 1$	39-5	$39 \cdot 9$	40.5	$40 \cdot 5$	$43 \cdot 5$	40.3	$40 \cdot 4$	40.5	40.6	$40 \cdot 7$	407	$40 \cdot 2$				
Aug.	41	41-3	41	41.3	41.4	4		41-3	$40 \cdot 5$						$39 \cdot 9$	$40 \cdot 6$	41.0	10.9	40.7	40.9	41.0	41.1	41.0	1	2	$0 \cdot 6$
Sept.	41 - 1	41.2	41.2	41.2		$41 \cdot 3$	.	$41 \cdot 3$	$40 \cdot 4$	$39 \cdot 3$	$38 \cdot 6$		$838 \cdot 4$		- 2	40.6	$40 \cdot 7$	$40 \cdot 6$	40.7	$40 \cdot 9$	40.9	41.1	41.1	$41 \cdot 2$	41.2	40.5
Summer Means	40.8	$40 \cdot 8$	40.8	40.8	40.8	$40 \cdot 9$	$41 \cdot 1$	$40 \cdot 9$	$40 \cdot 3$	39.5	33.0	38.2	$38 \cdot 3$	38	${ }_{39.4}$	40.0	$40 \cdot 4$	$40 \cdot 4$	$40 \cdot 4$	$40 \cdot 4$	40.5	$40 \cdot 6$	$40 \cdot 7$	40.8	40.8	0.8

Note-Figures in thick type represent the maximum and minimam valnes during the month.
TABLE L.XV—Tiurnal Inequality of the Dip at Kodaikanal in 1922 (deduced from TABLE LXIV.)


The torsion head of the declination magnetograph was adjusted by turning the micrometer head by two complete revolutions in November 1923.

Except for the above and a few other slight adjustments for light in both the declination and V．F．magnetographs these continued to function well throughout the year．The H．F．magnetograph clock gave occasional trouble and was thoroughly cleaned and oiled on two different occasions during the year．

During the heavy floods in Upper India in October 1924，the observatory was flooded from the 30th September to 7th October， necessitating a complete stoppage of work for that period．

The table below gives the mean monthly values of the magnetic collimation，the distribution constants $P_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the accepted value of the distribution factor $\log \left(1+\frac{\mathrm{P}}{\mathrm{r}^{2}}+\frac{Q}{\mathrm{r}^{4}}\right)^{-1}$ The values of the moment＂$m$＂in the table were derived from vibration observations taken with the chronograph．

Mean values of the constants of Magnet No． 17 at Dehra Dūn in 1923

Donths	Declination constants $\qquad$   Meau magnetic collimation	H．H．Conslants				
		Distribution factors			Mean values of m	
		$\mathrm{P}_{1.2}$	$\mathrm{P}_{2 \cdot 3}$	$\left\{\begin{array}{l} \text { Accepted values of } \\ \log \left(1+\frac{\mathrm{P}}{\mathrm{r}^{2}}+\frac{\mathrm{Q}}{\mathrm{r}^{4}}\right)^{-1} \end{array}\right.$	Monthly means	Accepted －
January	－7 11	608	7－28		806•36	
February	$-76$	6．11	7－40		－ 28	
March	$-72$	6．16	7－4		－ 25	
April	－ 72	（i－20	$7 \cdot 36$	－	$\cdot 34$	
May	$-70$	$6 \cdot 17$	$7 \cdot 31$	号	$\cdot 27$	号
Jnne	－659	6．17	$7 \cdot 58$	令	－ 12	－
Joly	$-659$	$6 \cdot 06$	719	$\begin{aligned} & \text { OR } \\ & \text { Oo } \end{aligned}$	$\cdot 19$	$\stackrel{+}{+}$
August	－656	6．18	7－49	号	$\cdot 38$	$\stackrel{-1}{8}$
Septeruber	－ 635	$6 \cdot 22$	7：33	$\underset{\sim}{\text { \＃}}$	34	$\infty$
October	－ 640	$5 \cdot 91$	$7 \cdot 18$	¢	38	
Noyember	－651	$5 \cdot 9 ;$	7－27		－34	
December	－655	$5 \cdot 92$	$7 \cdot 20$		－ 40	

78. 

Dehra Dun Observatory 1923．24．
79.

Mean values of the dechi－ nation and H．F．cons－ tants．
80. The table below gives the mean monthly observed and accepted

Mean baseline values. values of the declination and horizontal force base lines: the accepted values have been used to compute the values of these elements for lig

Base line values of magnetographs at Dehra Dün in 1923

Months		Declination				Horizontal Force	
		Mean value of Base line			se line epted	Mean value of Base line	Base line accepted
January					$5 \cdot 4$	-32633	-32633
February	...	1	$5 \cdot 8$			- 32631	- 32631
March	$\cdots$	1	6.0			. 32633	-32633
April	...	1	$6 \cdot 1$			. 32629	- 32629
May	...	1	$6 \cdot 4$			-32632	-32632
June	...	I	$6 \cdot 2$			- 32637	- 32637
Jaly	...	1	$6 \cdot 3$			- 32640	- 32640
Angast	...	1	6.2		$6 \cdot 2$	- 32636	- 32636
Soptember	$\cdots$	1	$6 \cdot 1$		$6 \cdot 1$	-326 49	-32649
October	...	1	$5 \cdot 9$		$5 \cdot 9$	-32650	- 32650
November	..	$\left\{\begin{array}{l}1 \\ 0\end{array}\right.$	6.1 43.8		$6 \cdot 1^{*}$ $43 \cdot 8 \dagger$	$\} \cdot 32651$	- 32651
December	...	0	$44 \cdot 2$		$44 \cdot 2$	- $32676 \pm$	- 32670

[^8]The mean scale values for 1923 for an ordinate of $1 / 25$ inch are:-

Horizontal Force	$4 \cdot 35$ gammas.
Declination	$1 \cdot 03$ minutes.
Vertical Force	$\mathbf{7} \cdot 44$ to $10 \cdot 05$ gammas.

81. 

Mean scale values and
temperature range.
The mean temperature for the year was $27^{\circ} \cdot 0 \mathrm{C}$., with maximum and minimum monthly values of $27^{\circ} \cdot 7 \mathrm{C}$. and $26^{\circ} \cdot 7 \mathrm{C}$. The temperature of reduction is $27^{\circ} \cdot 0 \mathrm{C}$.

The following table shows the monthly mean values of the magnetic elements for 1922 and 1923 and the annual changes for that period.

Annual changes at Dehra $D_{\bar{u}}$ in 1922-23

83. For reasons of economy the observatory was dismantled in Octore

Toungoo observatory 1923.
84.

Mean values of daolina. tion and H.F. constants. 1023 when the instruments were removed to Dehra Dūn and lie buildings were handed over to the Director, Burma Circle.

The magnetographs have functioned satisfactorily for the tal months they were working.

The table below gives the mean monthly values of the magnatit collimation, the distribution constants $\mathbf{P}_{1.2}$ and $\mathbf{P}_{2.3}$ and the acceppr value of $\log \left(1+\frac{P}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1}$ the distribution factor.

Mean values of the constants of Magnet No. 20 at Toungoo in 1903


Nofe.-The ribservatory was discontinued from October 1993.

The table below gives the mean monthly observed and accepted values of the declination and horizontal force base lines.
85. Mean base line values.

Base line values of magnetographs at Toungoo in 1923

Months		Declination			Horizontal I'orce	
			n valne of e line	Base line accepted	Mean value of base line	Base line accepted
		-		- '	C.G.S.	C.G.S.
January	...	1	14.0	114.0	-38920	- 38920
February	...		$13 \cdot 9$	J $13 \cdot 9$	-38917	- 38917
March	...		$13 \cdot 8$	113.8	- 38918	. 38918
April	...		$13 \cdot 7$	113.7	-38912	-38912
May	...		$13 \cdot 8$	$113 \cdot 8$	. 38914	- 38914
June	...		$13 \cdot 8$	113.8	-389I4	. 38914
July	...		$13 \cdot 7$	$113 \cdot 7$	- 38905	- 38905
August	...		$13 \cdot 6$	$113 \cdot 6$	-38901	-38901
Scptember	...		$18 \cdot 6$	$113 \cdot 6$	. 38901	. 389001

Note.-T'lice olvervatory was discontinned from October 1923.

86
Mean scale values and temperature range.

The mean scale values for 1923 for an ordinate of $1 / 25$ inch are--
Horizontal Force $5 \cdot 25$ gammas.
Declination $\quad 1 \cdot() 4$ minutes.
Vertical Force $\quad 5.87$ to 5.91 gammas.
The mean temperature for the year was $89^{\circ} .0$ Fahr., with maximu: and minimum values of $89^{\circ} \cdot 6$ and $88^{\circ} \cdot 4$ Fahr. The temperature reduction is $89^{\circ} \cdot 0$ Fahr.
87. Mean monthly values and annual changes.

The table below shows the monthly mean values of the magne elements for 1922 and 1923 and the annual changes for that perii

Annual changes at Toungoo in 1922-23

Months		Horizontal Force - 39000 C.G.S. +			Declination W. $0^{\circ}+$			Dip   N. $23^{\circ}+$			$\begin{array}{\|c\|} \hline \\ \text { Vertical Fout } \\ -16000 \text { C.6.s. } \end{array}$		
		1922	1923	Annual change	1922	$\|1923\|$	Annual change	1922	1923	Annual change	1922	1923	
		$\gamma$	$\gamma$	$\gamma$		,	,	,	,	,	$\gamma$	$\gamma$	1
January	...	131	201	+ 70	$29 \cdot 1$	31.1	$+2 \cdot 0$	7.4	$6 \cdot 4$	-1.0	709	726	$4{ }^{\circ}$
February	...	137	201	+64	23.8	31-6	$+2.8$	7.5	$6 \cdot 3$	-1.2	713	725	+1:
March	...	138	200	+ 62	28.9	31.5	$+2 \cdot 6$	7.5	$6 \cdot 3$	$-1 \cdot 2$	714	724	4 l
April	...	150	198	+ 48	$29 \cdot 0$	$31 \cdot 7$	+ $2 \cdot 7$	$7 \cdot 2$	$6 \cdot 3$	-0.9	716	$72+$	4
May	.	162	211	+ 49	$29 \cdot 3$	$31 \cdot 8$	$+2 \cdot 5$	$7 \cdot 4$	$6 \cdot 0$	-1.4	723	725	+
June	...	165	212	+ 47	29.4	42.1	+2.7	7.0	$6 \cdot 0$	-1.0	719	725	+i
Joly	...	160	209	+ 49	$29 \cdot 6$	32-2	$+2 \cdot 6$	7.0	$6 \cdot 1$	-0.9	717	724	+;
Angust		157	216	$+59$	29.8	32-5	+2.7	$7 \cdot 2$	$5 \cdot 9$	-1.3	718	725	+
September	...	163	219	+ 56	$30 \cdot 3$	$32 \cdot 9$	$+2.6$	7.0	$5 \cdot 9$	$-1 \cdot 1$	718	726	1
October	-••	162	..	$\ldots$	$30 \cdot 5$	5	$\cdots$	$7 \cdot 0$	$\cdots$	$\cdots$	718		*
Noyember		172	$\cdots$	$\cdots$	$30 \cdot 7$	$7 .$.	...	6.9	$\cdots$	$\cdots$	720	$\cdots$	"
December		173	...	$\ldots$	30.9	9	$\ldots$	$6 \cdot 8$	...	...	719	...	"'
Means	$\ldots$	156	...	$\cdots$	29.7	7	...	$7 \cdot 2$	...	...	717	...	

Note.-The obscrvatory was discontinued from October 1023.

As the observatory was closed in October 1923, the magnetographs for only the first nine months of 1923 were received in this office.
88.

Kodaikanal observatory 1923.

The table below gives the mean monthly values of the magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the value of the distribution factor $\log \left(1+\frac{\mathbf{P}}{\mathbf{r}^{2}}+\frac{\mathbf{Q}}{\mathbf{r}^{4}}\right)^{-1}$.
89. Mean values of the declination and H.F. constants.

Mean values of the constants of Magnet No. 16 at Kodaikānal in 1923


Note.-The observatory was discontinued from October 1923.

The table below gives the mean monthly observed and acceptel base line values of the declination and horizontal force magnetograpic

Base line values of magnetographs at Kodaikānal in 1923

Months		Declination		Horizontal Force	
		Mean value of base line	Base line accepted	Mean value of base line	Base line accepted
		- ,	-	C.g.S.	C.G.S.
January	$\cdots$	$2 \quad 48 \cdot 6$	$248 \cdot 6$	-37613	- 37613
Febrnary	$\cdots$	$2 \quad 48 \cdot 4$	248.4	-37618	- 37618
March	-."	$2 \quad 48 \cdot 5$	$248 \cdot 5$	-37617	. 37617
April	-••	248.6	$248 \cdot 6$	-37621	- 37621
May	$\cdots$	$2 \quad 48 \cdot 4$	248.4	- 37620	- 37620
Jane	$\cdots$	$2 \quad 48.4$	$248 \cdot 4$	-37620	-37620
July	-•'	$2 \quad 48 \cdot 3$	$248 \cdot 3$	- 37614	- 37614
August	-••	$2 \quad 48 \cdot 3$	$248 \cdot 3$	-37610	-37610
September	. ${ }^{\text {a }}$		$248 \cdot 1$	-37617	- 37617

Note.-The observatory was discontinued from October 1923.

The mean scale values for 1923 for an ordinate of $1 / 25$ inch are :Horizontal Force $\quad 5.89$ gammas. Declination $\quad 1.03$ minutes. Vertical Force $\quad 12 \cdot 94$ to $13 \cdot 13$ gammas.
91.

Mean scale values and temperature range.

The mean temperature for the year was $17^{\circ} \cdot 3 \mathrm{C}$, with maximum and minimum montlly values of $18^{\circ} \cdot 2 \mathrm{C}$ and $16^{\circ} \cdot 0 \mathrm{C}$. The temperature of reduction is $19^{\circ} \cdot 0 \mathrm{C}$.

The table below gives the monthly mean values of the magnetic elements for 1922 and 1923 and the annual changes for that period.

Annual changes at Kodaikānal in 1922-23
92.

Meanmonthly values and annual changes.


Note.-The observatory was discontinued from October 1923.
93. Mean values of magnetic elements at observatories in 1923.

Mean values of the magnetic elements at observatories in 1923

Observatory		Latitude and Longitude			Dip	Declination	H. F.	V.F
				"	- ,	- ,	C. G. S.	C.G. 8
Dehra Dūn	...			$\left.\begin{array}{l}19 \mathrm{~N} . \\ 19 \mathrm{E} .\end{array}\right\}$	N. $45 \quad 12 \cdot 5$	E. $138 \cdot 6$	- 32927	. 3316
Toungoo	$\ldots$		$\begin{aligned} & 55 \\ & 27 \end{aligned}$	$\left.\begin{array}{r}45 \mathrm{~N} . \\ 3 \mathrm{E} .\end{array}\right\}$	N. 23 6.1	W. 031.9	- 39207	-167\%
Kodaikinual	$\ldots$		$\begin{aligned} & 13 \\ & 27 \end{aligned}$	$\left.\begin{array}{l} 50 \mathrm{~N} . \\ 46 \mathrm{E} . \end{array}\right\}$	N. $441 \cdot 3$	W. 20.7	- 37950	-0314:

Note.-Means for 9 months only in case of Toungoo and Kodaikānal.

		0
苞		－
		目式：以 ：
		－${ }_{\sim}^{\infty}$
		－
		\＃心
	os	－
		ON－
		ONが号
	0	
	noos	$\underset{\sim}{N} \underset{\sim}{N}$
		ザ100 ！：
$\frac{-1}{2}$		
		$\bigcirc \times 10$ N ：
		MOMN ：m
	$\cdots \mathrm{n}$	OッNT：の
		O¢NM
1． 14		$\cdots{ }_{0} \times 1{ }^{0}$
$\begin{array}{l\|l} \substack{0 \\ 0 \\ 0 \\ 心 \\ 心} & =-1 \end{array}$		○๑内 ：！
$\stackrel{\sim}{\sim}$		のミの

Nole．－Tonnyoo and Kodaikanal observatories were discontinued from October 1923.
T.IbLE LXVII.—Huurly means of the Declination at Dehra Dun, in 1923 (determined from 5 selected quiet days)

Hours	0	1	2	3	$\pm$	5	6	7	8	9	10	11	Noon	n 13	14	15	16	17	18	19	20	21	22	23	0	¢
Jan.	$40 \cdot 3$	$40 \cdot 4$	$40 \cdot 3$	+10.2	$39 \cdot 9$	39.6	; 39.j	$39 \cdot$	$239 \cdot 8$	$40 \cdot 7$	$40 \cdot 9$	40-0	$39 \cdot 5$	$39 \cdot 8$	$40 \cdot 3$	40.4	$40 \cdot 4$	40-3	40•3	40•3	$40 \cdot 2$	$40 \cdot 2$	40.2	$40 \cdot 1$	40-1	4(). 1
Feb.	$40 \cdot 2$	40.	40.	$40 \cdot 0$	39	39	830	39•7	$40 \cdot 9$	41.8	41.9	41.2	40-3	$39 \cdot 7$	$39 \cdot 8$	$39 \cdot 9$	$40 \cdot 1$	$40 \cdot 3$	$40 \cdot 2$	$40 \cdot 1$	$40 \cdot 1$	$40 \cdot 2$				
Mar.	$40 \cdot 3$	40-4	40-3	$40 \cdot 2$	$240 \cdot 1$	$40 \cdot 0$	-39-9	$40 \cdot 4$	$41 \cdot 4$	41-9	41-5	$40 \cdot 2$	$38 \cdot 6$	$37 \cdot 0$	38.	$39 \cdot 2$	$40 \cdot 0$	40•	$30 \cdot 9$	$39 \cdot 9$	$39 \cdot 8$	$40 \cdot 0$	$40 \cdot 0$	$40 \cdot 1$	$40 \cdot 1$	$10 \cdot 0$
Oct.	$37 \cdot 5$	$37 \cdot 5$	$37 \cdot 5$	$37 \cdot 5$	-37-5	37	37	$33 \cdot 0$	$39 \cdot 1$	139-0	$38 \cdot 0$	$36 \cdot 6$	$35 \cdot 8$	35.4	35	$36 \cdot 9$	$37 \cdot 4$	$37 \cdot 5$	$37 \cdot 3$	$37 \cdot 2$	$37 \cdot 2$	37.2	$37 \cdot 3$	$37 \cdot 3$	$37 \cdot 3$	$37 \cdot 3$
Nov.	37.	37	37-4	$37 \cdot 4$	437	7.	37	37	37.	$38 \cdot 1$	37	37		37	3	$37 \cdot 7$	$37 \cdot 4$	$37 \cdot 2$	$37 \cdot 2$	37-3	$37 \cdot 3$	37.2	$37 \cdot 3$	$37 \cdot 3$	374	$37 \cdot 3$
Dec.	37	37	37-4	37	37	$37 \cdot 0$	3	$36 \cdot 8$	30	$37 \cdot 4$	$37 \cdot 6$	37	36	37	$37 \cdot 6$	$37 \cdot 7$	$37 \cdot 7$	$37 \cdot 7$	$37 \cdot 6$	$37 \cdot 6$	$37 \cdot 6$	$37 \cdot 5$	$37 \cdot 5$	$37 \cdot 5$	377	$37 \cdot 4$
Winter Means	$38 \cdot 9$	$38 \cdot 9$	$38 \cdot 8$	$38 \cdot 8$	\|38-6	S 5	$38 \cdot 4$	$38 \cdot 6$	$39 \cdot 3$	$39 \cdot 8$	$39 \cdot 6$	$38 \cdot 7$	$38 \cdot 0$	$37 \cdot 9$	$38 \cdot 3$	$38 \cdot 6$	$38 \cdot 8$	$38 \cdot 8$	$38 \cdot 7$	$38 \cdot 7$	$38 \cdot 7$	$38 \cdot 7$	$38 \cdot 8$	$38 \cdot 8$	38.8	$38 \cdot 7$
April	$39 \cdot 6$	$39 \cdot 7$	$39 \cdot 8$	$39 \cdot 8$	$39 \cdot 8$	39.9	$40 \cdot 1$	$40 \cdot 8$	41.7	41.8	$40 \cdot 6$	$38 \cdot 8$	$37 \cdot 5$	$37 \cdot 0$	$37 \cdot 3$	38.1	$38 \cdot 9$	$39 \cdot 5$	39-5	$39 \cdot 4$	$39 \cdot 3$	$39 \cdot 5$	$39 \cdot 6$	397	$39 \cdot 8$	$39 \cdot 5$
May	39.	$39 \cdot 6$	39.8	$39 \cdot 8$	$39 \cdot 7$	$39 \cdot 9$	$40 \cdot 7$	$41 \cdot 4$	t1.6	41.0	$39 \cdot 9$	38.	37-2	$36 \cdot 8$	36.9	$37 \cdot 8$	$38 \cdot 5$	$39 \cdot 1$	$39 \cdot 4$	$39 \cdot 1$	$39 \cdot 0$	$39 \cdot 1$	$39 \cdot 2$	$39 \cdot 3$	$39 \cdot 6$	$30 \cdot 3$
Jane	39.	$39 \cdot 2$	$39 \cdot 2$	$39 \cdot 2$	$39 \cdot 2$	. 3	40-3	$41 \cdot 2$	+1.5	$40 \cdot 9$	$39 \cdot 7$	$38 \cdot 2$	$36 \cdot 8$	$36 \cdot 3$	$36 \cdot 5$	$36 \cdot 8$	$37 \cdot 5$	$38 \cdot 2$	$38 \cdot 6$	$38 \cdot 3$	$38 \cdot 2$	$38 \cdot 4$	$35 \cdot 6$	$38 \cdot 7$	$38 \cdot 8$	$38 \cdot 7$
Jaly	33	$38 \cdot 9$	$39 \cdot 1$	$39 \cdot 1$	$39 \cdot 2$	$39 \cdot 4$	$40 \cdot 2$	$40 \cdot 7$	10.9	$10 \cdot 5$	$39 \cdot 6$	$38 \cdot$	37	36.5	$36 \cdot 3$	36.8	37.5	$38 \cdot 1$	$38 \cdot 2$	$38 \cdot 1$	$37 \cdot 9$	$37 \cdot 9$	$38 \cdot 0$	$38 \cdot 0$	$38 \cdot 2$	$38 \cdot 5$
Aug.	38	38	38	$38 \cdot 2$	$38 \cdot 3$	. 4	39.5	$40 \cdot 4$	$40 \cdot 6$	$39 \cdot 7$	38.0	$36 \cdot 7$	35	35	$36 \cdot$	$36 \cdot 9$	37	37.8	38	$37 \cdot 7$	$37 \cdot 6$	37.5	$37 \cdot 7$	$37 \cdot 9$	38.0	37.9
Sept.	37	$38 \cdot 0$	38.0	38	$38 \cdot 0$	$38 \cdot 0$	38-4	$39 \cdot 1$	$39 \cdot 8$	$39 \cdot 0$	$37 \cdot 4$	$36 \cdot 2$	$35 \cdot 3$	$34 \cdot 9$	35-8	$37 \cdot 0$	$37 \cdot 7$	37-8	$37 \cdot 4$	$37 \cdot 3$	37-4	37.5	$37 \cdot 6$	$37 \cdot 7$	$37 \cdot 8$	$37 \cdot 5$
Sumaer Means	38.8	$38 \cdot 9$	$39 \cdot 0$	$39 \cdot 0$	\|39-0	$\mid 39 \cdot 2$	$\|39 \cdot 9\|$	$40 \cdot 6$	41.0	$40 \cdot 5$	$39 \cdot 2$	$37 \cdot 7$	$36 \cdot 7$	36.2	$36 \cdot 5$	$37 \cdot 2$	$37 \cdot 9$	38.4	$38 \cdot 5$	$38 \cdot 3$	38.2	38-3	$38 \cdot 5$	$38 \cdot 6$	$38 \cdot 7$	38.6

Thble LXVIII. - Diurnal Inequality of the Declination at Delira Dun in 1923 (deduced from TABLE LXViI).


Huars.	0	1	${ }^{2}$	3	4	5	6	7	8	9	10	11	on	13	14	15	16	17	18	19	20	21	22	23	0	喜
			0	${ }^{\gamma}$	${ }_{917}^{2}$	${ }_{9}{ }^{\text {r }}$	021	${ }_{9}{ }^{7}$	${ }_{92}{ }^{\text {a }}$	939	$\stackrel{r}{\text { ges }}$	${ }_{9}{ }^{7}$	${ }_{9} 9$	$\stackrel{\gamma}{9}$	$\stackrel{\gamma}{9}{ }_{92}$	$\stackrel{\gamma}{93}$	$\stackrel{\gamma}{\gamma}$	${ }_{918}^{7}$	917	${ }_{916}$	${ }_{9}{ }^{7}$	\|915	${ }_{9}{ }^{7} 7$	${ }_{918}{ }^{7}$	${ }_{918}^{7}$	${ }_{919}$
		915	916		917	919	919	920	927 924	939	925		924	925	920	918	916	916	917	918	918	918	915	915	918	919
		915	91		18		914	915	916	918	923	28	931	936	934	928	921	916	914	913	913	912	911	912	912	917
	90	909	910		912		1	92	937	937	930	935	936	36	931	929	925	925	926	927	928	928	929	928	930	929
	929	929	930		929		98			943	915	948	94	944	939	936	936	933	936	36	36	5	5	936	937	939
Dec.	${ }^{935}$	${ }^{935}$	935	936	932	${ }_{93}^{937}$	${ }^{986}$								937		935		931	30	930	930	929	929	\%	935
Dec.	931	933	931	939	932	932	934																			
( Wiuter	933	923	923	923	994	924	925	997	930	931	932	935	935	935	931	928	926	924	924	923	923	923	${ }_{23}$	923	924	926
pril	910	910	910	910	910	910	910	910	909	916	922	928	923	929	926	021	917	909	909	908	906	907	907	906	907	914
May	920	921	920	91	918	930	922	921	920	923	928	938	944	945	942	937	929	924	921	821	922	924	924	924	922	926
Jane	933	924	4	922	923	925	926	926	922	921	926	932	939	941	939	933	927	923	921	922	923	924	925	925	925	924
uly	993	924	923	924	923	923	925	926	927	931	${ }^{936}$	937	939	943	940	938	932	928	925	925	924	925	926	927	929	929
	924	933	924	924	98	926	925	32.	924	928	932	935	939	941	942	941	938	$93+$	930	930	930	930	930	929	930	30
pt.	939	039	939	940	940	941	940	936	933	33	937	944	949	951	950	946	943		942	941	940	941	941	942	942	${ }_{41}$
	923	92.4	923	${ }^{93}$	923	924	925	923	923	${ }^{25}$	930	${ }^{936}$	940	942	940	936	931	927	923	925	924	925	926	926	926	


$\begin{aligned} & \hat{X} \\ & \hat{x} \\ & \dot{A} \\ & \text { 勾 } \\ & \hat{y} \\ & \hat{y} \end{aligned}$	$\bigcirc$	$\bigcirc$	$\stackrel{+}{1}$	$\square$ 1	10 1	+ + +	$\cdots$	10 1	$\stackrel{\sim}{\sim}$		$\stackrel{1}{1}$	1	+ + +	$\bigcirc$			$\cdots$
	ผิ			＋	$\cdots$		$\infty$				$\infty$	$\cdots$	$\sim$	N			$\sim$
								1	1		1	1	＋	1	1	1	1
	N		N	＋	$\bigcirc$		＋	0 1	$\infty$			$$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\bigcirc$	0	$7$
	－		1		1	1	1	10 1	$1$		A	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	$0$	$1$		$\bigcirc$	$\begin{gathered} \omega \\ 1 \end{gathered}$
	요		1		$\stackrel{+}{1}$	1	1		1		$\cdots$	+ 1	$\cdots$	$\stackrel{1}{5}$		$\begin{gathered} 7 \\ 1 \end{gathered}$	$\infty$
$\begin{aligned} & \text { y } \\ & 0 \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{9}{1}$		1	1	+1 1	en 1	1		$\begin{gathered} \infty \\ 1 \end{gathered}$		$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \omega \\ 1 \end{gathered}$	$\begin{gathered} N \\ 1 \end{gathered}$	$\begin{aligned} & H \\ & 1 \end{aligned}$	0	$\bigcirc$	
$\begin{aligned} & \text { تِ } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\infty}{\sim}$		1		1	1	$\cdots$		0		$\begin{gathered} 0 \\ 1 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \text { मi } \\ & 1 \end{aligned}$		$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{gathered} \text { N } \\ \text { I } \end{gathered}$
$\stackrel{\ominus}{\theta}$	$\stackrel{ }{-}$				7 1	$\stackrel{+}{1}$	$\cdots$		N 1		ما	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \text { r } \\ & 1 \end{aligned}$	+ +	$\begin{aligned} & \sim \\ & + \end{aligned}$	$\bigcirc$
$\begin{aligned} & 0 \\ & { }_{2}^{2} \end{aligned}$	$\because$	${ }^{\sim}+$				I			$\bigcirc$			$\begin{aligned} & \infty \\ & + \end{aligned}$	$\infty$	$\infty$	$\infty$	$\begin{aligned} & \mathbf{N} \\ & + \end{aligned}$	$\begin{aligned} & \text { + } \\ & + \end{aligned}$
$\cdot \sim$	$\square$	${ }^{+}$		1	$\stackrel{H}{-}+$			$\bigcirc$	+ + +			$\stackrel{7}{+}$	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\begin{aligned} & \text { or } \\ & + \end{aligned}$	$\stackrel{7}{+}$	$\begin{aligned} & \text { م } \\ & + \end{aligned}$	0 +
$\stackrel{N}{2}$	$\stackrel{\text {＊}}{ }$	$10$	+			$+$		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 15 \\ & + \end{aligned}$		$\stackrel{91}{+}$	$\stackrel{\oplus}{+}$	$\stackrel{10}{+}$	$\begin{aligned} & 7 \\ & + \end{aligned}$	$\stackrel{N}{+}+$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\stackrel{9}{+}$
$\stackrel{\Sigma}{N}$	$\stackrel{m}{\square}$	$\bigcirc$	＋			$+$	مו	$\begin{aligned} & \text { F } \\ & + \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & + \end{aligned}$		$\stackrel{n}{1}+$	$\begin{aligned} & 9 \\ & + \\ & + \end{aligned}$	$\stackrel{N}{+}$	$\begin{aligned} & \text { + } \\ & + \end{aligned}$	$7$	$\begin{aligned} & 0 \\ & + \end{aligned}$	18 + +
－	$\begin{aligned} & 5 \\ & \hline 8 \\ & \hline \end{aligned}$	－	$+$	＋		$\begin{aligned} & + \\ & + \end{aligned}$	$\stackrel{O}{+}$		$\begin{aligned} & \sigma \\ & + \end{aligned}$	$\stackrel{+}{+}$		$\stackrel{\infty}{+}+$	$\begin{gathered} \stackrel{\sim}{1} \\ + \end{gathered}$	$\stackrel{O}{+}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	＋ + +
$\dot{L}$	こ	$\checkmark$		＋				$+$	$\begin{aligned} & \sigma \\ & + \end{aligned}$			$\stackrel{\text { Na }}{+}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \text { n } \\ & + \end{aligned}$		or +
$\begin{gathered} 5 \\ 8 \end{gathered}$	$\bigcirc$	${ }_{\square}^{\circ}+$	$+$	＋	10 +	+ + +		$\begin{aligned} & 0 \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$				$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$+$	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \\ & 1 \end{aligned}$	¢ +
	0	$\cdots$	＋			$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\stackrel{O}{+}$	$\begin{aligned} & \text { + } \\ & + \end{aligned}$		＋	1	$\cdots$	+ +	O	$\cdots$	$\stackrel{\sim}{*}$
	$\infty$	${ }^{\infty}+$	＋				$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$			$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} N \\ 1 \end{gathered}$	$\begin{gathered} \sim \\ 1 \\ 1 \end{gathered}$	$\cdots$	$\begin{gathered} \infty \\ 1 \end{gathered}$	
	－	$\cdots$					$+$	$\begin{aligned} & \text { © } \\ & + \end{aligned}$	+ + +			$10$	$\circ$	$\begin{gathered} 0 \\ 1 \end{gathered}$	F	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\pi$
	$\omega$	$i^{\circ}$	＋			$\begin{array}{r} \text { rin } \\ 1 \end{array}$	1	$\stackrel{-1}{1}$	$\stackrel{1}{1}$				$\begin{aligned} & \mathrm{N} \\ & + \end{aligned}$	$\begin{gathered} F \\ 1 \end{gathered}$	n 1	$\stackrel{T}{1}$	a
	$\bigcirc$	$\lambda$					$\begin{aligned} & \mathrm{N} \\ & 1 \end{aligned}$	$1$	$0$			$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\stackrel{-}{+}+$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\bigcirc$	$\infty$
	＊	$\overbrace{1}^{N}$				$\bigcirc$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} 8 \\ 1 \end{gathered}$			$\infty$	$\underset{1}{-1}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\stackrel{r}{1}$	$7$
	0	$\stackrel{i}{1}_{7}^{7}$	$1$		I	－	$\infty$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$			$1$	$\begin{gathered} N \\ 1 \end{gathered}$	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$7$	
	$\cdots$	$\cdots$	1 1					$\begin{aligned} & +1 \\ & 1 \end{aligned}$	$\stackrel{\infty}{1}$			$1$		$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathbf{N} \\ 1 \end{gathered}$	
	$\rightarrow$	1				$\bigcirc$		$\begin{gathered} 01 \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$			$1$	－	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$1$	$\begin{gathered} \mathbf{N} \\ \mathbf{I} \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$
	$\bigcirc$	$\lambda^{\circ}$						+ 1	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & +1 \\ & 1 \end{aligned}$		$\begin{aligned} & \infty \\ & 1 \end{aligned}$	-	$\begin{gathered} e \\ 1 \end{gathered}$	1	$\begin{gathered} \text { © } \\ 1 \end{gathered}$	$1$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \dot{g} \\ \stackrel{\text { g }}{3} \\ \hline \end{gathered}$			界	$\begin{gathered} 8 . \\ 0 \end{gathered}$	若			$\begin{aligned} & \overrightarrow{2} \\ & \frac{2}{4} \end{aligned}$		导	$\begin{gathered} \text { 吕 } \\ \text { 号 } \end{gathered}$	$\stackrel{\Delta}{\square}$	$\stackrel{e 0}{\stackrel{e}{E}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	

Note－Horizontal Force is greater or less than the mean as sign is + or - ，



NOTE-Vertical Force is greater or less than the mean as sign is + or - .
DIP $=45^{\circ}+$ tabular quantity

TABLE LXXIV.-Diurnal Inequality of the Dip at Dehra Dun in 1923 (deduced from TABLE LXXIII.)

Hoars	0	1	2	3	4.	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0
Jan.	+0.2	$\div 0.4$	$+0.0$	$+0 \cdot 3$	+0.2	+0.1	0	-0.2	-0.2	-0.4	-0.5	- $\mid-0.7$	$\|-0.4\|$	$\|-0.3\|$	$\mid-0.1$	$\mid-0.1$	+0.1	$\mid+0.3$	+0.3 $\mid$	+ ${ }^{\prime}$	+0.3	+0.3 $\mid$	+0.2	+0.2	+0.1
Feb.	$+0 \cdot 3$	+0.2	+0.2	+0•1	0	0												+0.1	+0.	+0.2	+0.2	+0.2			. 1
Mar.	$+0.7$	+0.6	+ $3 \cdot 6$	$+0 \cdot 6+$	+ 0.5	+0.4	+0.4	+0.4	+0.3	+0•1	$-0.4$	$4-1 \cdot 2$	$-1 \cdot 4$	$\mid-1 \cdot 6$	$-1 \cdot 1$	-0.6	-0.2	0	+ 0	+0.1	+0.2	+0.3	+ $0 \cdot 4$		
Oct.	$+$	$+0.1$	+0.]	$+0 \cdot 1+$	$+0 \cdot 1$	+0.1	$+0.1$	+ $0 \cdot 2$	$+0 \cdot 3$		$-0.3$	$3-0.8$	$-0.9$	$-0.8$	$-0.3$	$-0.2$	$+0.3$	+0.3	+0.3	+ $0 \cdot 4$	+0.4	+0.4	$+0 \cdot 3$		
Nov.	+ $0 \cdot 5$	$+0 \cdot 3$	-0.3	$+0 \cdot 3+$		+0.2		0	0	-0.2						0	0	$+0 \cdot 2$	0	0 +0.2	0 +0.2	0	+0.1 +0.3	+0.1 +0.3	0
Dec.	+ 0.3	$+0 \cdot 1$	$+0 \cdot 2$	$+0 \cdot 2$	+0.2	$+0 \cdot 1$	+0.1	$\mid-0 \cdot 1$	$1\|-0 \cdot 5\|$	$\mid-0.6$	-0.6	\|-0.6	$-0 \cdot 6$	$\mid-0.3$	$\mid-0.2$	- -0.1	-0.1	0	+0.1	$+0 \cdot 2$	$+0 \cdot 2$	+0.2	$+0 \cdot 3$	$+0.3$	+0.3
Winter   Mean:	+0.4	+ $0 \cdot 3$	+ $0 \cdot 3$	$\|+0 \cdot 3\|+$	+0.3	+0.2	+0.2	$+0 \cdot 1$	$0$	2	-0.4	4-0	$-0 \cdot 7$	-0.6	$\mid-0 \cdot 3$	- -0.1	$1+0 \cdot 1$	+0.2	+0.2	+0.3	$+0 \cdot 3$	$+0 \cdot 3$	+0.3	+0.3	+0.3
April	$+0 \cdot 2$	+ $0 \cdot$	+ $0 \cdot$	$+0 \cdot 2+$	+0.2	+0.2	+0.3	+0.4	$4+0 \cdot 5$	-0.2	-0.8	-1.4	-1.3	$-1 \cdot 1$	-0.8	-0.3	0	+0.4	+0.4.	+0.4	$+0 \cdot 6$	+0.5	+0.5	+0.6	$+0.5$
May	$+0.2$	+0.3	+0.3	+0.3	+0.4	+0.3	+ $0 \cdot 3$	+0.4	+ $+0 \cdot 2$	-0.2	-0.7	$-1 \cdot 1$	-1.4	-1.3	-1.0	-0	0	$+0 \cdot 3$	+0.4	+ $0 \cdot 4$	+ 0.4	+0.3	$+0 \cdot 3$	+0.3	$+0.4$
June	$+0 \cdot 2$	$+0 \cdot 1$	+0.2	$+0 \cdot 3+$	+0.2	+0.2	+0.9	$+0.4$	$4+0 \cdot 3$	$+0 \cdot 1$	-0.5	$-1 \cdot 0$	$-1 \cdot 3$	$-1 \cdot 3$	-1.0	-0:5	0	$+0.3$	+0.4	+0.4	+0.3	+ $0 \cdot 4$	+0.3	+0.3	+0.3
July	+ $0 \cdot 5$	$+0.4$	$4+0 \cdot 5$	+ $0 \cdot 4$	+ 0.5		+	+ $0 \cdot 5$	+0.3	0	$1-0$	$-0$	$-1 \cdot 2$	$-1 \cdot 4$	$1-1 \cdot 2$	$-0.8$	$8-0 \cdot 3$	$0$	+0.2	+0.2	+0.3	$+0 \cdot 2$	+0.3	+0.2	+0.2
Aug.	+0.4 +0.1	$+0 \cdot 5$	$\left(\begin{array}{l}+0.5 \\ +0.1\end{array}\right.$	[0. ${ }^{+}$	+0.4	+0.4	+0. 5	$+0 \cdot 6$	$\left(\begin{array}{l}+0.4 \\ +0.5\end{array}\right.$	0	-0.4	$4 \left\lvert\, \begin{aligned} & -0.7 \\ & -0.5\end{aligned}\right.$	$\begin{gathered} -1 \cdot 0 \\ 0.7 \end{gathered}$	$\left(\begin{array}{c} -1 \cdot 0 \\ 0.7 \end{array}\right.$	-0.7 -0.5	- -0.6	$\left[\begin{array}{c}-0 \cdot 3 \\ 0\end{array}\right.$	$\left\|\begin{array}{c} -0.5 \\ 0 \end{array}\right\|$	0	0	+0.1 +0.1	+0.1	+0.1 +0.1	+0.2 +0.1	$+0 \cdot 1$ 0
Sept.	+0.1	0	$\mid+0 \cdot 1$	10	0	0	+0.1	+0.4	$4+0 \cdot 5$	+0.3	-0.1	$1-0.5$	-0.7	-0.7	$\mid-0.5$	-0.2	0	0	0	0	+0.1	0	+0.1	+0.1	0
Summer Means	+0.2	+0.2	$2+0 \cdot 3$	\| $+0.2 \mid$	+ $0 \cdot 2$	$+0 \cdot 2$	+0.3	+ $0 \cdot 4$	$4+0 \cdot 3$	0	-0.5	5 $\mid-1 \cdot 0$	-1.2	-1.2	$\|-0.9\|$	\|-0.5	$\|-0 \cdot 1\|$	0	+0.2	+0.2	$+0 \cdot 3$	+0.2	+0.2	+0.2	+0.2

NOTE-Dip is greater or less than the mean as sign is + or - .
TABLE LXXV. - Hourly means of the Declination at Toungoo in 1923 (determined from 5 selected quiet days) Declination $=\mathrm{W} 0^{\circ}+$ tabular quantity

Jan.	$31 \cdot 3$	$31 \cdot 2$	31.2	$\mid 31 \cdot 3$	$\mid 31 \cdot 4$	\|31.6'	[32.0	32.2	\| 31.5	$30 \cdot 4$	$\mid 29 \cdot 9$	$30 \cdot 4$	31.1	$31 \cdot 1$	\|31.1	$\mid 30 \cdot 9$	$3{ }^{\prime} \cdot 6$	$30 \cdot 8$	$31 \cdot 1$	$31 \cdot 2$	31.2	31.3	31-3	$31 \cdot 4$	31.4	$31 \cdot 1$
					31	31.9	$32 \cdot 3$	32.2	31.7	31.0	$20 \cdot 6$	$30 \cdot 9$	31.6	$31 \cdot 6$	$31 \cdot 9$	$32 \cdot 0$	$31 \cdot 8$	31.7	31.7	31.6	31.6	31.5	31.4	$31 \cdot 4$	31.6	$31 \cdot 6$
		31.3								30) 5	$30 \cdot 8$	$31 \cdot 6$	$32 \cdot 4$	$32 \cdot 7$	32-4	31.5	31.0	$30 \cdot 9$	31.5	$31 \cdot 6$	$31 \cdot 6$	$31 \cdot 6$	$31 \cdot 6$	31.5	$31 \cdot 5$	$31 \cdot 5$
		1.3																								
			31.6	31.6	\|31.6	$31 \cdot 6$	$\|31 \cdot 3\|$	$30 \cdot 6$	$30 \cdot 3$	$30 \cdot 3$	$30 \cdot 9$	$32 \cdot 0$	$33 \cdot 1$	$32 \cdot 9$	$32 \cdot 8$	$32 \cdot 3$	31.8	$31 \cdot 6$	$32 \cdot 0$	31.9	$32 \cdot 0$	$32 \cdot 0$	31.9	$31 \cdot 7$	$31 \cdot 6$	$31 \cdot 7$
								$30 \cdot 0$	$30 \cdot 1$	$30 \cdot 8$	$31 \cdot 7$	$32 \cdot 7$	$33 \cdot 2$	$33 \cdot 1$	$32 \cdot 6$	$32 \cdot 2$	$31 \cdot 7$	$31 \cdot 3$	31.8	$32 \cdot 2$	$32 \cdot 3$	$32 \cdot 3$	$32 \cdot 2$	$32 \cdot 2$	$32 \cdot 1$	$31 \cdot 8$
May	$32 \cdot 0$	31-9	31.8			31. 6		30	10	30.8	31.7	32.4							$32 \cdot 3$	$32 \cdot 4$	$32 \cdot 4$	$32 \cdot 4$	$32 \cdot 4$	$32 \cdot 3$	$32 \cdot 3$	$32 \cdot 1$
Jane	32.2	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	32.0	$31 \cdot 1$	$30 \cdot 1$	$29 \cdot 9$	$30 \cdot 6$	31.5	$32 \cdot 4$	$33 \cdot 3$	$33 \cdot 6$	$33 \cdot 4$	$33 \cdot 1$	$32 \cdot 6$	$32 \cdot 2$	$32 \cdot 3$	$32 \cdot 4$	$32 \cdot 4$	$32 \cdot 4$	32.4	32	32	
J					$32 \cdot 1$	$32 \cdot 7$		$30 \cdot 5$	$30 \cdot 8$	31.0	$31 \cdot 5$	$32 \cdot 3$	33	$33 \cdot 2$	$33 \cdot 1$	$32 \cdot 8$	$32 \cdot 5$	$32 \cdot 4$	$32 \cdot 6$	$32 \cdot 7$	$33 \cdot 0$	$32 \cdot 9$	$32 \cdot 7$	$32 \cdot 5$	$32 \cdot 5$	$32 \cdot 2$
						32.9	31.4								$33 \cdot 5$	$33 \cdot 2$	$32 \cdot 6$	$32 \cdot 4$	$32 \cdot 5$	$32 \cdot 8$	$33 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$32 \cdot 8$	$32 \cdot 6$	$32 \cdot 5$
Ang.	$33 \cdot 6$	$32 \cdot 4$	32•j			12.2	$31 \cdot 4$	$30 \cdot 6$	$30 \cdot$	$31 \cdot 3$	$32 \cdot 4$	$33 \cdot 4$	33	33.8	$33 \cdot 5$	$33 \cdot 2$	$32 \cdot 6$	$32 \cdot 4$	32.5		- 0	-				
Sept	32.8	12.8	$32 \cdot 8$	[32.6	$32 \cdot 6$	'32 6	$32 \cdot 0$	31.2	31.	31.8	$32 \cdot 9$	$33 \cdot 6$	34.5	$34 \cdot 7$	$33 \cdot 9$	$33 \cdot 1$	$32 \cdot 5$	$32 \cdot 6$	$33 \cdot 3$	$33 \cdot 1$	$33 \cdot 1$	$33 \cdot 1$	33.0	$33 \cdot 0$	$32 \cdot 9$	$32 \cdot 9$
$\begin{aligned} & \text { Snamen } \\ & \text { Mcatins } \end{aligned}$	$2 \cdot 3$	$\therefore 2$	$32 \cdot 1$	$3-1$	32.0	$1320$	$31 \cdot 3$	$30 \cdot 5$	30-5	1 $31 \cdot 0$	$31 \cdot 8$	$32 \cdot 7$	\|33 5	$33 \cdot 6$	$33 \cdot 2$	$32 \cdot 8$	$32 \cdot 3$	$32 \cdot 1$	32.4	$32 \cdot 5$	$32 \cdot 6$	$32 \cdot 6$	32.5	$32 \cdot 4$	32-3	32.2

[^9]The observatory was dismantled in October 1923.
TABLE LXXVI.—Diurnal Inequality of the Declination at Toungoo in 1923, (deduced from TABLE LXXV)

Hoars	0	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0
Jan.	$-0.2$	$-0$	$\|-0.1\|$	$\mid-0.2$	$-0 \cdot 3$	$-0.5$	- $0 \cdot 9$	-1'1	$\|-0.4\|$	+0.7	$\|+1 \cdot 2\|$	+ $0 \cdot 7$	0	0	0',	$\|+0 \cdot 2\|$	+0.5	$+0 \cdot 3$	${ }^{\prime}$	$\mid-0.1$	$\|-0 \cdot 1\|$	-0.2	$\left\lvert\, \begin{gathered}\text { ' } \\ -0.2\end{gathered}\right.$	-0.3'	$1-0 \cdot 3$
Feb.	+0.1	0	0	-0.1	-0.2	-0.3	-0.	-0.6	-0.1	+0.6	$+1 \cdot 0$	+0.7	0	0	$-0 \cdot 3$	$-0.4$	-0.2	$-0 \cdot 1$	$-0.1$	0	0	+0.1	+0.2	$+0 \cdot 2$	0
Mar	0	0	0	-0.1	-0.1	2	-0.2	+0.2	+0.9	+1.0	+0.7	$-0.1$	-0.9	$\mid-1 \cdot 2$	$\mid-0 \cdot 9$	0	+ $0 \cdot 5$	+0.6	0	-0.1	-0.1	$-0 \cdot 1$	-0.1	0	0
April	0	0	+0.1	+0.1	+0.1	+0.1	+0.4	+1.1	+1.4	$+1 \cdot 4$	$+0.8$	$-0 \cdot 3$	1.4	.	$\|-1 \cdot 1\|$	-0.6	-0.1	+0.1	-0.3	-0.	$-0 \cdot 3$	$-0.3$		0	$1+$
Mar	-0.2	$-0 \cdot 1$	0	0	$+0 \cdot 2$	+0.2	+1.1	+1-8	+1.7	+1.0	+0.1	-0.9	-1.4	-1.3	-1) 8	$-0 \cdot 4$	+0.1	+0.5	0	-0.4	-0.5	-0.5	-0.4	-0.4	$-0 \cdot 3$
Jane	-0.1	+0.1	+0.1	+0.1	+0.1	$+0 \cdot 1$	+1.0	$+20$	+2.2	+1.5	+0.6	$0 \cdot 3$	$-1 \cdot 2$	$-1 \cdot 5$	-1-3	-1.0	$-0 \cdot 5$	-0.1	$-0 \cdot 2$	$-0 \cdot 3$	-0.3	$3\|-0 \cdot 3\|$	$3\|-0 \cdot 3\|$	-0.2	$-0.2$
Jaly	-0.1	0	+0.1	+0	+0.1	$+0 \cdot 5$	+1.2	+1.	+1.4	+1.2	$+0 \cdot \%$	$0 \cdot 1$	$-1 \cdot 0$	-1 $\cdot 0$	$-0.9$	$-0.6$	-0.3	-0.2	$\|-0 \cdot 4\|$	-0.5	-0.8	$\|-0 \cdot 7\|$	$-0 \cdot 5$	$-0 \cdot 3$	$-0.3$
Ang	$-0 \cdot 1$	+0.1	0	+0.1	+0.2	$+0 \cdot 3$	+1•1	+1.9	$+2 \cdot 0$	+1.2	$+0 \cdot 1$	$-0 \cdot 9$	$-1$	$-1 \cdot 3$	$3 \mid-1 \cdot 0$	-0.7	-0.1	$+0 \cdot 1$	0	$-0 \cdot 3$	-0.5	$-0 \cdot 5$	$-0 \cdot 5$	$-0 \cdot 3$	-0.1
Sept*	+01	$+0 \cdot 1$	+0.1	+0	+0.3	+0.3	$+0 \cdot 9$	+1.7	+1.7	+1.1	0	$\mid-0 \cdot 7$	$\mid-1 \cdot 6$	$\mid-1 \cdot 8$	$\|-1 \cdot 0\|$	-0.2	+0.4	+0.3	-0.4	-0.2	-0.2	-0.2	$-0 \cdot 1$	-0.1	0
Summer   Means	$\|-0 \cdot 1\|$	0	+0.1	$+0 \cdot 1$	+0.2	+0.2	+0.9	+1.7	+1.7	+1•2	+0.4	-0.5	-1.3	-1.4	-1.0	-0.6	-0.1	$+0.1$	-0.2	-0.3	-0.4	-0.4	-0.3	-0.2	$-0 \cdot 1$

Note-Maguet points to east or west of mean position as sign is + or - .

* The observatory was disraantled in October 1923.
TABLE LXXVII.— Hourly means of Horizontal Force in C.G.S. units corrected for temve:ature at Toungoo in 1923 (trom 5 selected quiet days)

Note - Figures in thick type represent the maximum and minimam vaines daring the month.
= The observatory was dismantled in October 1923.
TABLE LXXVIII.-Diurnal Inequality of the Horizontal Force at Toungoo, in 1923 (deduced from TABLE LXXVII.)

Note-Horizontal Force is greater or less than the mean as sign is + or - .
* The observatory was dismantled in October 1923.


[^10]* 'The observatory wus dismantled in October 1923.
TABLE LXXX.—Dinrnal Inequality of the Vertical Force at T'onngoo in 1923, (deduced from TABLE LXXIX.)

Note- Vertical Force is greater or less than the mean as sign is + or - .
* 'The observatory was dismantled in October 1923.
JABLE LXXXI.—Hourly means of the Dip at Toungoo in 1923, (determined from 5 selected quiet days) $\mathrm{DIP}_{\text {IP }}=\mathrm{N} 23^{\circ}+$ tabular quantity

Hours	0	1	2	3	4	5	6	7	8	9	10	11	\|Noon	13	14	15	16	17	18	19	20	21	22	23	0	
Jan.	4.8	6'8	$6.8$	$6$	$6 \cdot 8$	$6 \cdot 8$	$6 \cdot 6$	$6 \cdot 6$	$6.6$	$6 \cdot 2$	$5 \cdot 6$	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 7$	$6 \cdot 2$	$6 \cdot 5$	$6 \cdot 7$	$6 \cdot 7$	$6 \cdot 7$	$6 \cdot 7$	$6 \cdot 8$	$6 \cdot 8$	6.8	$6 \cdot 7$	6.4
Feb.	$6 \cdot 8$	$6 \cdot 8$	6.8	$6 \cdot 8$	$6 \cdot 8$	$6 \cdot 7$	$6 \cdot 6$	$6 \cdot 6$	$6 \cdot 2$	5.8	5.2	4.8	4.8	$5 \cdot 3$	6.8	$6 \cdot 2$	$6 \cdot 4$	$6 \cdot 5$	$6 \cdot 6$	$6 \cdot 6$	$6 \cdot 7$	$6 \cdot 7$	$6 \cdot 7$	$6 \cdot 8$	$6 \cdot 8$	$6 \cdot 3$
Mar.	$7 \cdot 1$	$7 \cdot 0$	$7 \cdot 1$	$7 \cdot 1$	$7 \cdot 1$	$7 \cdot 0$	$7 \cdot 0$	7.0	$6 \cdot 4$	$5 \cdot 4$	$4 \cdot 5$	$3 \cdot 8$	4-1	$4 \cdot 8$	$5 \cdot 6$	$6 \cdot 3$	$6 \cdot 5$	$6 \cdot 6$	$6 \cdot 6$	$6 \cdot 8$	$6 \cdot 9$	$6 \cdot 9$	$7 \cdot 0$	$7 \cdot 1$	7-1	$6 \cdot 3$
April	68	$6 \cdot 7$	$6 \cdot 9$	$6 \cdot 8$	64	$5 \cdot 5$	$4 \cdot 7$	4-5	$4 \cdot 8$	$5 \cdot 4$	5.9	$6 \cdot 3$	$6 \cdot 6$	$6 \cdot 6$	$6 \cdot 6$	6.8	$6 \cdot 8$	$6 \cdot 8$	$6 \cdot 9$	$6 \cdot 9$	$6 \cdot 9$	6.3				
May	$6 \cdot 5$	$6 \cdot 5$	6.4	$6 \cdot 5$	$6 \cdot 5$	$6 \cdot 4$	$6 \cdot 8$	$6 \cdot 6$	$6 \cdot 1$	$5 \cdot 2$	$4 \cdot 6$	$4 \cdot 3$	$4 \cdot 3$	$4 \cdot 8$	$5 \cdot 4$	$6 \cdot 0$	$6 \cdot 4$	$6 \cdot 5$	6•3	$6 \cdot 4$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 3$	$6 \cdot 0$
June	63	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 4$	$6 \cdot 6$	6-5	$6 \cdot 1$	$5 \cdot 4$	$4 \cdot 9$	$4 \cdot 5$	4-4	4.8	$5 \cdot 2$	$5 \cdot 7$	$6 \cdot 2$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 3$	6•3	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 0$
July	$6 \cdot 7$	$6 \cdot 7$	6.6	$6 \cdot 6$	$6 \cdot 5$	$6 \cdot 6$	$6 \cdot 7$	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 5$	$4 \cdot 9$	4.6	$4 \cdot 7$	$4 \cdot 9$	5-1	5.6	$6 \cdot 0$	$6 \cdot 2$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 5$	6-5	6.6	$6 \cdot 6$	$6 \cdot 1$
Aug.	66	$6 \cdot 5$	$6 \cdot 4$	6.4	6.4	$6 \cdot 4$	$6 \cdot 6$	$6 \cdot 5$	$6 \cdot 0$	$5 \cdot 1$	4.7	$4 \cdot 4$	$4 \cdot 3$	$4 \cdot 7$	$5 \cdot 2$	$5 \cdot 7$	$5 \cdot 9$	6.0	$6 \cdot 0$	6•1	$6 \cdot 2$	$6 \cdot 2$	$6 \cdot 2$	$6 \cdot 3$	$6 \cdot 3$	$5 \cdot 9$
Sepı**	$6 \cdot 4$	$6 \cdot 4$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 3$	6.4	$6 \cdot 4$	$6 \cdot 0$	$5 \cdot 0$	4.3	$4 \cdot 1$	$4 \cdot 3$	$4 \cdot 9$	$5 \cdot 7$	6.2	$6 \cdot 4$	6.2	$6 \cdot 0$	6.1	6.2	$6 \cdot 3$	6.4	$6 \cdot 4$	$6 \cdot 3$	$5 \cdot 9$
Summer Means	$6 \cdot 6$	$6 \cdot 5$	$6 \cdot 5$	6.5	$6 \cdot 5$	6.5	$6 \cdot 7$	$6 \cdot 6$	$6 \cdot 1$	$5 \cdot 3$	$4 \cdot 7$	$4 \cdot 4\}$	$4 \cdot 5$	$4 \cdot 9$	$5 \cdot 4$	$5 \cdot 9$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 3$	$6 \cdot 4$	6.4	$6 \cdot 4$	$6 \cdot 5$	$6 \cdot 5$	$6 \cdot 5$	6.0

Note-Figures in thick type represent the maximum and minimum values daring the month. - The observatory was dismantled in October 1923.
TABLE LXXXII.—Diurnal Inequality of the Dip at Tonngoo in 1923, (deduced from TABLE LXXXI.).


[^11]* The observatory was dismantled in October 1923.
I.IBLE LXXXIII.-Hourly means of the Declination at Korlaikinal in 1923, (determined from $\overline{5}$ selected quiet days) Declinition $=W 1^{\circ}+$ tabular quantity
 NOT上-Fignres in thick type represent the maximum and minimnm values doring the month.
TABLE LIXXIF- -Diurual Inequality of the Declination at Korlaikiōnal in 1923, (deduced from TABLE LXXXIII)

Note—Magnet points to the east or west of the mean position as sign in + or - .
* The observatory was dismantled in October 1923.


[^12]TABLE LXXXV1, - Dinenal Inequality of the Horizontal Force at Kodaikãnal in 1923, (deduced from TABLE LXXXV.)

Honrs	0	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0
Jan.	${ }_{-\gamma}^{\gamma}$	$\left\lvert\, \begin{gathered}\gamma \\ -12\end{gathered}\right.$	-	$\left\lvert\, \begin{gathered}\gamma \\ -10\end{gathered}\right.$	$\gamma$   -12	${ }_{-1}$	${ }^{\gamma}$	$\left\|\begin{array}{c}\gamma \\ -4 \\ \hline\end{array}\right\|$	$\mid{ }^{\gamma} 7$	$\left\lvert\, \begin{gathered}\gamma \\ +23\end{gathered}\right.$	$\gamma$ +30	$\gamma$   +32	$\gamma$ +29	$\gamma$   +22			$\left\lvert\, \begin{gathered}\gamma \\ -9\end{gathered}\right.$	-	-	-10	${ }_{-11}^{\gamma}$	-11	$\left\lvert\, \begin{gathered}\gamma \\ -10\end{gathered}\right.$	8	${ }^{7} 10$
Feb.	-	-17	-	-15	-15	-14	-13		$+9$	+30	+44	+ 51	+43	+ 27						1	-10	-14	-16	-15	-14
Mar.	-	-22	-2	-20	-18	-16,	-	-14		+30	$+5$	+ 108	+101	+40	14	- 8	7	-14	2	4	-16	-17	-18	-19	-19
April	-	-	-	-	-	- 14	-13	- 7	+11	+37	+ 53	+ 56	+46	+30	$+8$	-10	-15	-15	-13	-15	-17	-18	-18	-18	-18
May	-1	-12	-	-13	-12	-	9	8	+ 6	+28	+43	+36	+31	+18	+14	- 2	- 9	-11	-10	-10	- 9	- 9	-	-9	-1
Jane	-11	$-10$	-	-10	- 9	-	-	$-7$	+ 5	+	+35	+43	+38	+26	+10	- 4	-10	-12	-12	-13	-12	-11	-1	-1	- 9
Joly	-13	-11	-11	-10	-11	-11	-10	- 6	0	+13	+26	$+37$	+33	+25	+		-	-13	-13	-10	-10	-11	-1	- 9	-
Ang	-16	$-15$	-15	-14	-14	-14	14	-12	- 1	+18	+33	+41	+39	+32	+20			-12	-10	- 8	9	-9	-11	-11	-10
Seft;	-16	-16	-16	-15	-16	-13	-14	-10	+ 7	$\pm 36$	+ 52	+ 55	+45	+27	+ 6	- 9	-13	$-7$	-7	-10	-13	-14	-1	-14	-1
Summer   Means	-14	-13	-12	-13	-12	-12	-11	- 8	+ 5	+26	+ 40	+45	+39	+26	+12	- 3	-10	-12	-11	-11	-12	-12	-12	-12	-11

[^13]* The observatory was dismantled in October 1923.

sub9K			$\stackrel{\square}{\exists}$
－			$\stackrel{9}{7}$
๕ั	－「合 召		哃
ส	－		$\stackrel{3}{7}$
ส̇	入®	욕	$\stackrel{\infty}{\square}$
8			$\stackrel{\infty}{\square}$
$\stackrel{9}{\square}$			合
$\pm$	－	®®®	$\stackrel{\text { A }}{ }$
$\pm$	－응 咢 ${ }^{\circ}$		$\stackrel{\infty}{\sim}$
9	－\％\％		$\stackrel{9}{7}$
$\stackrel{\square}{7}$	－¢ 융		$\stackrel{\square}{7}$
$\pm$			$\stackrel{3}{3}$
®	入\％（\％\％\％		$\stackrel{\text { ¢ }}{\square}$
$\begin{aligned} & \hline \stackrel{\circ}{2} \\ & \hline \end{aligned}$		\％\％¢ 三 ¢ ¢	$\stackrel{\rightharpoonup}{\square}$
$\exists$			$\stackrel{\text { ® }}{\sim}$
9	－\％${ }_{\text {\％}}^{\text {\％}}$ \％	이ㅇㅡㅡㅋㅋ을	合
$\infty$	$\cdots$	읔 ¢ ® ®	$\stackrel{\otimes}{7}$
$\infty$	$\bigcirc$		\％
5	－		茳
$\bullet$	－i）${ }^{\circ}$	今 吅	\％
15			玉
$\bigcirc$			$\stackrel{9}{7}$
$\infty$			\％
$\infty$	入̇̈口		$\stackrel{\text { ¢ }}{\sim}$
$\rightarrow$	说 $\overbrace{3}^{3}$ g		역
$\bigcirc$			9

[^14]TABLE LXXXVIII:-Diurnal Inequality of the Vertical Force at Kodaikānal in 1923, (deduced from TABLE LXXXVII.)

Note-Vertical Force is greater or less than the mean as sign is $+\boldsymbol{o r} \boldsymbol{-}$.

* The observatory was dismantled in October 1923.
TABLE LXXXIX.—Hourly means of the Dip at Kodaikānal in 1923, (determined from 5 selected quiet days) DIP $=N 4^{\circ}+$ tabular quantity

Note-Figures in thick type represent the maximum and minimam valnes daring the month.
* The observatory was diamantled in October 1923.
TABLE XC.—Diurnal Inequality of the Dip at Kodaikanal in 1923, (deduced from TABLE LXXX1X.)

Mots- Dip is greater or less than the mean as the sign is + or - .
* The observatory was dismantled in October 1923.

95. 

## Hof.magneto-

 graph.
## 96 <br> Declination magnetograph.

97. V.F. magnetograph.
98. 

observatory and electra tramway in Debra Dun.

The magnetograph have worked satisfactorily during the year $19 \cdot 4 \cdot 25$ except for the following minor interruptions which may be divided under three main heads :-

## Accidental.

Stoppage of driving clocks.
Failure of light.

There were two accidental interruptions in the H.F. magnetograph clock, the first following the dropping of the drum shatter between 24 th and 25 th March 1925 and the second caused for a fer
hours on 15 th July 1925 , by the breakage of the directing lever of between "th and 25th March 1925 and the second caused for a fer
hours on lith July 1925, by the breakage of the directing lever of the clock.

The clock stopped on several occasions for periods, not exceeding 3 hours in any case before it was noticed, cleaned and restarted. The lamp platform and the light slit were adjusted on three different occasions, whenever due to secular change the light was falling off the drum.



Besides the loss to traces consequent on the stoppage of the clot as enumerated under the working of the H.F. magnetograph, there mas only one interruption to the Declination magnetograph lasting for a day and caused by the falling of the shutter between 16th and 17 th February 1925 and another by the failing of light on lith November 1924. The light slit and the lamp platform were adjusted on 7th February 1925 and between lith and 20th of the same month. The condensing lens of this magnetograph gave some trouble about the early part of this year and was cleaned and adjusted on three different occasions.

There was no loss of trace in V. F. magnetograph clock and only one adjustment for better light was made on 29th July 1925.

The temperature inside the observatory was maintained by the burning of two lamps during the period 12 th November 1924 to Blast May 192.5 and by the occasional introduction for a few hours of a bras stove during the winter months. Only one lamp was kept burning during the rest of the year.

Some water appeared in the passage outside the observatory about the midhle of August l9:5, but was pumped out before it could accumulate and do any damage. The fears entertained about the abandonment of the observatory consequent on the introduction of electric trams in Dehra Dunn have been set aside at least temporarily due to the Tramway Company going into liquidation. The standard sidereal Clock named A having been removed for the purpose of installation in the Rioter (lock room, the observatory chronometer $\pi$ mas compared weekly beginning from March logs, against Clock B, of which the error and rate were supplied as usual by the time observer. The vibration times for the absolute observations were hone yer recorded on the chronograph against the seconds of the Riefler Clock.

The table below gives the mean monthly values of the magnetic cullimation, the distribution constants $\mathrm{P}_{1.2}$ and $\mathrm{P}_{2 \cdot 3}$ and of the distribution fuctor $\log \left(1+\frac{P}{r^{-2}}+\frac{Q}{r^{4}}\right)^{-1}$. The values of the moment " $m$ " in the table were derived from vibration observations taken with the

99
Mean values of declination and H.F. constants. dronograph.

Menu values of the constants of Magnet No. 17 at Dehra Dūn in 1924

Months	Declination constants $\qquad$   Mean magnetic: collimation	H. F. Constants				
		Distribution factors			Mean valacs of m	
		$\mathrm{P}_{1.2}$	$\mathrm{P}_{2 \cdot 3}$	$\log \left(1+\frac{\mathrm{P}}{\mathrm{r}^{2}}+\frac{\mathrm{Q}}{\mathrm{r}^{4}}\right)^{-1}$	Monihly means	Accented   m
	"					
Janamry ...	$6 \quad 49$	5.91	$6 \cdot 15$		S06. 52	
February ...	641	$6 \cdot 02$	7.01		. 51	
March ...	$6 \quad 43$	$6 \cdot 00$	6.89		$\cdot 44$	
Apreril ...	(j)37	5.94	$6 \cdot 88$	苛	- 30	$\stackrel{\square}{\square}$
$\mathrm{M}_{\text {ny }}$...	6 45	5.83	$7 \cdot 03$	吕	-41	\%
Janc ...	640	$5 \cdot 90$	7.14	+	- 30	-
July ...	( 49	6.04	6.14	1080	-24	$\infty$
Angns: ...	C it	$5 \cdot 79$	654	\%	- 16	$\dot{¢}$
September...	0 6 50	$6 \cdot 00$	$6 \cdot 46$	-	-33	$\infty$
Octwher ...	() 54.	607	$6 \cdot 61$		$\cdot 27$	
Sosember ...	6 5	$5 \cdot 79$	$6 \cdot 46$		- 31	
berembier ...	(i) 5	$5 \cdot 86$	$6 \cdot 12$		- 36	

100. 

Mean base line values. values of the declination and horizontal force base lines. The acepented values have been used to compute the values of these elements for thet The horizontal force base lines have been derived from H as determined with the moment of inertia of Maguet No. 17 obtained from obsema tions in 1919 and the distribution factor as given in the section.

Base line values of magnetograph at Dehra Dūn in 1924

(a) up to 1\%tb. (b) from 13th,
101. The mean scale values for 192 J for an ordinate of $1 / 25$ inchare:-

Man scale vaines and temporatire. range.
$4 \cdot 35$ gammas.
$1 \cdot 03$ minutes.
$8 \cdot 80$ to $10 \cdot 90$ gammas.

The mean temperature for the year was $26^{\circ} \cdot 7 \mathrm{C}$. with maximum and minimum monthly values of $26^{\circ} \cdot \Omega$ and $26^{\circ} \cdot 5 \mathrm{C}$. The temperatur of reluction is $\stackrel{27^{\circ}}{ } .0 \mathrm{C}$.

The following table shows the monthly mean values of the magnelic elements for 1923 and 1924 and the annual changes for that period.
102. Mean monthly values and annual
changes.

103. Mean values of magnetic eloments at Dehri Dun 1924.

Mean values of the magnctic elements at Dehra II inn in 1924

Observatory	Latitude and Longitude	Dip	Declination	H F.	Y.
	- , "	-	c	C.G.S.	C. 6.
Dehra Dū̆	$\left.\begin{array}{rrr}30 & 19 & 19 N \\ 78 & 3 & 19 \mathrm{E}\end{array}\right\}$	N. $4517 \cdot 1$	E. $134 \cdot 6$	-3:940	330


TABLE XCII - Hourly mertus of the Declination at Dehra Dūn in 1924, ( determinerl from 5 aplected quiet, days)



Note.-The magnet points to the east or west of the mean position as sign is + or - .

งпкอ\％	入啠 息		¢	淿							¢	4
$\bigcirc$		器	弟	咢							管	4
\％		易	\％	荌		¢	苁	7	莳	8	\％	5
N		융 ${ }_{\circ}^{\infty}$	易	笍		家	筞	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％	昌	－	5
ล	冷 问	융	令	癹		$\stackrel{\rightharpoonup}{\circ}$	菅	\％	\％	昌	¢	8
앙		¢ ¢ \％	\％	\％		會	䦡	®	¢	\％	－	${ }_{0}^{\infty}$
$\stackrel{\square}{\square}$		㖮	ஜ	丽			等	¢	昆	㗊	－	\＃
$\pm$		¢\％¢ ¢ ¢	\％	皆			芯	㐌	育	昌	¢	管
12		凩 ${ }_{\circ}^{\text {\％}}$	勉	痗			$\stackrel{\square}{\sigma}$	浆	$\stackrel{\infty}{\square}$	$\stackrel{9}{8}$	－	$\stackrel{\square}{4}$
9	入令 别 部	号	¢	¢			合		令	\％	¢	$\stackrel{9}{6}$
$\because$	「染	$\stackrel{\infty}{\circ}$ \＃	翎	医			㝵	無	$\stackrel{\square}{6}$	号	\％	$\stackrel{*}{0}$
$\pm$	入苟 命	汇	앙	\％			¢		¢	尽	क	成
$\because$		官 8	笑	筞			会	令	荗	¢	${ }^{\text {\％}}$	吕
$\begin{aligned} & \hline 5 \\ & 0 . \\ & \hline 0 \end{aligned}$	入登 落	宫 $\quad$ E	\％	$\underset{N}{7}$			䇡			F	8	－
こ		号 ${ }_{6}^{\text {¢ }}$	它	示			昌	棠	官	\％	哈	\％
은	入気	$\stackrel{9}{6}$	$\stackrel{\text { c }}{\text { c }}$	会		ふ	あ ${ }^{\text {d }}$	\％	㫛	앙	命	\％
$\bigcirc$		菅	哭	骨		¢ \％		か	¢	\％	$\sigma$	皆
$x$	入蛧	癹	$\stackrel{\cong}{\sigma}$	\％		筞		쿵	$\stackrel{9}{6}$	$\stackrel{1}{9}$	⿵ㅏㅇ	$\stackrel{1}{6}$
$1-$	入获刽 笑	骨 ${ }_{\text {¢ }}^{\text {¢ }}$	尔	突			¢ ${ }^{\text {¢ }}$	$\stackrel{\circ}{\circ}$	\％	交	的	F
$\bigcirc$		¢ 8 ¢	農	\％		菏	$\stackrel{+}{3}$	¢	$\stackrel{9}{\circ}$	号	僉	\％
$\therefore$		为 哭	茫	\％			$\stackrel{\square}{6}$	F．	¢	昌	管	\％
＋		葸	锢	詟		管	芴	为	皆	$\bigcirc$	실	¢
$\cdots$		岡	発			$\begin{aligned} & \mathrm{T} \\ & \hline \end{aligned}$		융		$\stackrel{\circ}{\circ}$	管	筞
$\because$		菅 䔍	厣	\％		$\vec{\circ} \mathrm{F}$	$\stackrel{7}{6}$	\％	\％	$\stackrel{9}{6}$	荌	筞
－		品	会	令		$\stackrel{9}{6} \text { 형 }$		$\bar{\sigma}$			盆	$\stackrel{1}{3}$
$\bigcirc$	八春 聿 橧	$\stackrel{H}{\circ}$	哭	\％		㨱					$\stackrel{\otimes}{\circ}$	尔
$\begin{aligned} & \text { 荷 } \\ & \end{aligned}$	号 宝 号		$\stackrel{\dot{め}}{\stackrel{1}{\circ}}$	$\begin{aligned} & \text { 台呂 } \\ & \text { 昆 } \end{aligned}$		ت	合	$\begin{aligned} & \text { 吕 } \\ & \hline \end{aligned}$	专	宏	䔍	



$\bigcirc$		$+$	7 1	$m$ 1	$0$	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{I} \end{gathered}$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\begin{gathered} \boldsymbol{\sim} \\ 1 \end{gathered}$	$\bigcirc$	+ +		$\bigcirc$
8		+ + +	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} m \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\stackrel{7}{1}$			$\begin{gathered} H \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & - \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	＋	0
ผิ	20	0	－	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} -1 \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$		$\stackrel{-1}{+}$	$\begin{aligned} & \mathbf{r} \\ & \mathbf{I} \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & -1 \\ & + \end{aligned}$	$\bigcirc$	$+$	0
－	$\cdots$	1	1 1	$\begin{aligned} & \text { H } \\ & 1 \end{aligned}$	$\begin{gathered} \sim \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{r} \\ & 1 \end{aligned}$	$\begin{gathered} \hline N \\ 1 \end{gathered}$		$\begin{aligned} & \mathbf{r} \\ & + \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 1 \end{gathered}$	$\begin{gathered} \text { in } \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\bigcirc$	$\bigcirc$	$\begin{gathered} \text { ~ } \\ 1 \end{gathered}$
$\stackrel{\square}{1}$	${ }^{6}$	1	7	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} \mathbf{N} \\ 1 \end{gathered}$	$$		$\bigcirc$	$T$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} \pi \\ 1 \end{gathered}$	$\bigcirc$	O1 +	$\begin{gathered} \infty \\ 1 \end{gathered}$
$\stackrel{9}{\sim}$		$+$	$0$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} 0 \\ 1 \end{gathered}$		$\bigcirc$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & H \\ & 1 \end{aligned}$	$\begin{gathered} \text { H } \\ 1 \end{gathered}$	0	+ + +	$\begin{gathered} -1 \\ 1 \end{gathered}$
$\stackrel{\infty}{\sim}$	ro	0	$\cdots$	$\begin{aligned} & \mathrm{r} \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \text { r } \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} -1 \\ 1 \end{gathered}$		$\begin{aligned} & \sim \\ & + \end{aligned}$	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	a 1	$\begin{gathered} 40 \\ 1 \end{gathered}$	0	+ + +	0
上	$广$	$+$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$0$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\bigcirc$	$\begin{aligned} & \mathrm{r} \\ & 1 \end{aligned}$	$1$			$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{gathered} \text { av } \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{r} \\ & 1 \end{aligned}$	－	$\begin{aligned} & -1 \\ & + \end{aligned}$
$\stackrel{\sim}{\sim}$	$\stackrel{ }{+}$	＋	$+$	$\begin{aligned} & r \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	0	$\begin{aligned} & \mathrm{N} \\ & + \end{aligned}$			$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & - \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	or +	+ + +
9	$\lambda$	＋	＋	$\infty$	$0$	$\infty$	$\begin{aligned} & 7 \\ & + \end{aligned}$	+ + +			$\sigma$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\stackrel{-}{7}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\stackrel{\oplus}{7}+$	$\begin{aligned} & 0 \\ & + \end{aligned}$
$\underset{\sim}{7}$	$\stackrel{\square}{ }$	＋	$+$	$\begin{aligned} & 5 \\ & + \end{aligned}$	$\begin{aligned} & \text { \# } \\ & + \end{aligned}$	$\Phi$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \bullet \\ & + \end{aligned}$		$\stackrel{N}{+}$	$\stackrel{\sim}{+}$	$\stackrel{+}{+}$	$\stackrel{7}{+}$	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\stackrel{\text { a }}{+}$	$\stackrel{\text { ® }}{+}$
$\stackrel{\sim}{\sim}$	¿O		$\stackrel{-}{+}+$	$\begin{aligned} & 0 \\ & + \\ & + \end{aligned}$	$\stackrel{+}{+}$	$\begin{aligned} & 0 \\ & \hline \\ & + \end{aligned}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$\infty$ +		$\stackrel{n}{+}$	$\stackrel{7}{+}$	$\stackrel{10}{+}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & 9 \\ & + \end{aligned}$	+ +	7 + +
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & z \end{aligned}$	ro		＋	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\stackrel{\text { 9 }}{+}$	$\stackrel{\text { an }}{+}$	$\stackrel{-}{+}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$		＋	$+$	$\begin{aligned} & \text { O } \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & 1- \\ & + \end{aligned}$	$\stackrel{0}{1}$	$\begin{aligned} & +\infty \\ & + \end{aligned}$
च	ro			$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$	$\begin{aligned} & \sigma \\ & + \end{aligned}$	+ + +			$+$	$\begin{aligned} & N \\ & + \end{aligned}$	$\begin{aligned} & -1 \\ & + \end{aligned}$	$\stackrel{r}{1}$	0 1	$\stackrel{+}{+}$
응	$\checkmark$	$1$	1	$\begin{aligned} & \text { H } \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$+$	$\begin{aligned} & \text { Lo } \\ & \text { f. } \end{aligned}$	+ + +		1	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\bigcirc$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	$\underset{1}{\underset{\sim}{N}}$	$10$
$\bigcirc$	${ }^{\circ}$	$+$	$\stackrel{1}{1}$	$+$		$\infty$	$\begin{aligned} & N \\ & + \end{aligned}$	$\begin{aligned} & \text { O } \\ & + \end{aligned}$		$\stackrel{9}{1}$	の ।	0	$\bigcirc$	$\overline{7}$		$\infty$
$\infty$	$\cdots$	$+$	1	$\begin{gathered} \infty \\ 1 \end{gathered}$		$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & + \end{aligned}$	$\stackrel{-}{+}$		$\stackrel{\sim}{1}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & N \\ & 1 \end{aligned}$	$\stackrel{r}{1}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{gathered} 0 \\ 1 \\ 1 \end{gathered}$	$\infty$
－			$\stackrel{7}{1}$	$\begin{gathered} \Gamma \\ 1 \end{gathered}$	$\infty$	$\stackrel{r}{1}$	$\stackrel{-}{+}$	$\xrightarrow{-1}$		1	$\begin{aligned} & \text { F } \\ & 1 \end{aligned}$	$\begin{aligned} & \pi \\ & 1 \end{aligned}$	r	$\begin{aligned} & 00 \\ & 1 \end{aligned}$	7 1	
$\bigcirc$	$\cdots$		$\begin{gathered} \mathrm{N} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\infty$		N   1	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \text { H } \\ & 1 \end{aligned}$	$\overline{1}$	$\bigcirc$	0	$\infty$
$\bigcirc$		$1$	$\infty$	$\infty$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { F } \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$		1	$\sigma$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\dot{\nabla}$	$0$	$+$	N
＊		$1$	$\begin{aligned} & +1 \\ & 1 \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{gathered} 0 \\ 1 \end{gathered}$	$\begin{aligned} & 71 \\ & 1 \end{aligned}$			0	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\bigcirc$	$\bigcirc$	0
$\infty$		1	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} + \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$1$			$\stackrel{N}{\mathrm{~N}}$	I	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{array}{r} -1 \\ 1 \end{array}$	$\stackrel{+}{+}$	$\begin{gathered} \infty \\ 1 \end{gathered}$
\％	$\lambda$	$1$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$		$\begin{gathered} 10 \\ 1 \end{gathered}$			$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & w \\ & 1 \end{aligned}$	$1$	$\stackrel{-}{1}$	$\infty$			
$\square$		$\stackrel{\infty}{\infty}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{gathered} 1- \\ 1 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$		$\begin{gathered} 10 \\ 1 \end{gathered}$		$1$	$\begin{gathered} 07 \\ 1 \end{gathered}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\bigcirc$	0 1	$\begin{gathered} \infty \\ 1 \end{gathered}$
$\bigcirc$		I	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$		$\begin{aligned} & 10 \\ & 1 \end{aligned}$		$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$+$	$\cdots$	$\begin{aligned} & 0 \\ & \text { I } \end{aligned}$	$\bigcirc$	$\cdots$	$\begin{gathered} \infty \\ 1 \end{gathered}$
$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\dot{y}}{\underset{\sim}{g}}$	$\begin{aligned} & \dot{\Phi} \\ & \dot{1} \\ & \hline 10 \end{aligned}$	$\stackrel{\dot{\Xi}}{\stackrel{y}{3}}$		$\begin{aligned} & \dot{8} \\ & \substack{8} \end{aligned}$	$\dot{\ddot{0}}$	$\begin{aligned} & \text { 品 合 } \\ & \text { 易 } \end{aligned}$		$\begin{aligned} & \text { 总 } \end{aligned}$	旨	$\begin{gathered} \text { E } \\ \stackrel{\text { E }}{\stackrel{1}{2}} \end{gathered}$	$\stackrel{H}{E}$	$\begin{aligned} & 80 \\ & \frac{8}{4} \end{aligned}$	シ	

TABLE XCVI．—Hourly means of Vertical Force in C．G．S．units corrected for temperature at Dehra Dün in 1924， （from 5 selected quiet days）

${ }^{\text {®пвว }} \mathrm{K}$	$\bigcirc$	－	¢	F	ャ	葿	융	辰		永	¢ٌ	E	岩	冎	罢	＊
$\bigcirc$	$\rightarrow$	\％	\％	\％	号	¢	$\overrightarrow{\mathrm{m}}$	$\stackrel{\substack{0 \\ \hline}}{\sim}$		\％	骨	N	\％	网	－	\％
§	$\rightarrow \stackrel{0}{\mathrm{c}}$	－	筒	¢	$\stackrel{\text { 8 }}{\text { ¢ }}$	号	$\infty$			$\stackrel{\square}{0}$		去	¢	涊	罥	\％
ส	入	－	诏	N	㖞	令	$\stackrel{7}{00}$	\＆			－	号	汤	凨	風	N
－	$\bigcirc$	N	笭	\％	螞	号	$\infty$	¢		\％	\％	$\stackrel{\circ}{*}$	尔	柕	$\stackrel{\text {－}}{\text { ¢ }}$	A
8	$\cdots \stackrel{ }{\square}$		茳	¢	＋	®	$\cdots$	\＆		8	¢	只	－	～09	5	N
$\stackrel{9}{\sim}$	$\bigcirc$	－	䔍	\％	岗	呙	$\stackrel{\square}{6}$	\％			念	$\stackrel{18}{6}$	－	通	畕	d
$\pm$	－${ }^{9}$	－	㨥	F	灾	号	－	8		袁	¢	H	$\stackrel{\circ}{\text { a }}$	¢\％	－	－
$\stackrel{\square}{7}$	$\cdots \frac{9}{9}$	$\stackrel{3}{\sim}$	惘	\％	菏	蕒	¢	¢			\％	岩	－	잋	～	8
$\oplus$	$\times \frac{9}{2}$	令	\％	앛	䫆	\＃	¢	\％		－	¢	\％	－	舛	ज	$\stackrel{0}{0}$
$\stackrel{\square}{\square}$	G	ล	\％	毎	＋	骨	－	\％			－	¢	$\stackrel{\circ}{\text { ¢ }}$	宛	${ }^{\circ}$	－
$\pm$	$\stackrel{7}{*}$	$N$	骨	＊	8	梁	¢	\％		濷	呙	\％	웇	罢	䯇	\％
$\stackrel{\sim}{9}$	$\cdots$	－	－	盒	－	宊		硈		熍	葛	蕗	会	\％	¢	\％
$\begin{array}{r} 0 \\ 0 \\ \text { z } \\ \hline \end{array}$	$\cdots$		©o	$\stackrel{\rightharpoonup}{\circ}$	$\begin{gathered} \text { 㶲 } \end{gathered}$	雩	웅	${ }^{10}$		\％	\％	咸		\％	¢	发
च	$\cdots$		ลจ	留	\％	骨	\％	－		雷	$\stackrel{8}{6}$	笑	－	尔	ה	昜
$\bigcirc$	${ }^{\circ}$		\％	¢	梁	澸	\％	茄		尔	茄	$\stackrel{\rightharpoonup}{\circ}$	蕆	氷	－	8
$\infty$	－		范	$\stackrel{̣}{8}$	$\stackrel{9}{\text { d }}$	㕹	$\underset{\sim}{\text { \＃}}$	发		㕹	占	\％	¢	＋	呙	\％
$\infty$	－${ }^{\text {e }}$		䜤	$\stackrel{10}{01}$	8	号	6	剨		茳	＋	南	$\stackrel{8}{9}$	－	－	N
1－	「		菏	$\begin{aligned} & \circ \\ & \stackrel{y}{N} \end{aligned}$	$8$	永	$\stackrel{\sim}{\infty}$	¢		漠	$\underset{\substack{0 \\ \hline 1 \\ \hline}}{ }$	$\stackrel{\infty}{N}$	梁	\％	㫛	会
$\bullet$	$\bigcirc$		筞	$\underset{\sim}{*}$	®	号	$\stackrel{19}{6}$	${ }_{8}^{\infty}$		芯	¢	滣	䢕		$\stackrel{8}{8}$	易第
is	＋		梁	－	唇	$\stackrel{\text { ¢ }}{\text {－}}$	$\cdots$	\％			勉	今	咸	$\stackrel{1}{\circ}$	园	${ }_{\text {E }}$
＋	入		简	第	\％	$\stackrel{\square}{8}$		$\stackrel{\infty}{\circ}$		¢ ${ }_{\circ}^{\circ}$	茳	$\stackrel{\circ}{\text { ¢ }}$	$\vec{\circ}$	${ }_{\text {¢ }}^{\substack{\text { ¢ }}}$	碞	会
$\infty$	ล		䎂	$\stackrel{刃}{0}$	8	¢	管	$\stackrel{\circ}{0}$			\％	${ }_{0}^{\circ}$	$\stackrel{\square}{8}$	$\stackrel{5}{5}$	$\stackrel{\otimes}{1}$	毼
$\cdots$	$\cdots$		骨	芫	$8$	号	$\stackrel{9}{0}$	－			$\underset{\sim}{*}$	¢	产	$\stackrel{N_{0}^{\circ}}{0}$	$\stackrel{\otimes}{\circ}$	4
$\rightarrow$	$\cdots$		ค	$\stackrel{?}{?}$	\％	晨		¢		$\stackrel{1}{8}$	\％	只	$\stackrel{\rightharpoonup}{1}$	$\stackrel{5}{\substack{\text { on }}}$	－	$\stackrel{0}{*}$
$\bigcirc$	入		筂	想	$8$	圱		淢		¢	O\％	$\stackrel{18}{8}$	\％	品	$\underset{\substack { \infty \\ \begin{subarray}{c}{\infty{ \infty \\ \begin{subarray} { c } { \infty } } \\{\hline 1}\end{subarray}}{\substack{\text { d }}}$	\％
$\begin{aligned} & \dot{4} \text { 苟 } \\ & \text { 㽞 } \end{aligned}$		$\stackrel{1}{5}$	$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\dot{⿷ 匚}}{4} \end{aligned}$	$\dot{\ddot{g}}$	$\stackrel{\Delta}{0}$	$\begin{array}{r} \dot{\Delta} \\ \frac{1}{4} \\ \hline \end{array}$	$\dot{\Delta ்}$			$\begin{aligned} & \vec{a} \\ & \text { 号 } \end{aligned}$	桼	$\stackrel{\otimes}{g}$	点		＋	

TABLEXCVYI-Diurnal Inequality of the Vertical Force at Dehra Dūn in 1924, (deduced from TABLE XCVI)

Notr-Vertical Force is greater or less than the mean as sign is + or - ,
TABLE XCVIII.-Hourly means of the Dip at Dehra Dün in 1924, (determined from 5 selected quiet days) DIP $=\mathrm{N} 45^{\circ}+$ tabular quantity

Hours	0	1	$\pm$	3	4	5	t	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	0	㠰	
Jan.	16.0\|	$15 \cdot 8$	15.8	15.8	$15 \cdot 8$	15.8	$15 \cdot 7$	$15 \cdot 7$	15.4	$\left\lvert\, \begin{array}{cc}15 & 3\end{array}\right.$	$15 \cdot 4$	$14 \cdot 9$	$14 \cdot 9$	15-1	$15 \cdot 1$	\| $15 \cdot 2$	$15 \cdot 2$	$15 \cdot 2$	$15 \cdot 4$	$15 \cdot 4$	$15 \cdot 5$	$15 \cdot 5$	$15 \cdot 4$	$15 \cdot 3$	$15 \cdot 2$	15.4	
Feb.	16.1	$16 \cdot 1$	16.9	$16 \cdot 2$	$16 \cdot 1$	$16 \cdot 1$	$16 \cdot 0$	$16 \cdot 0$	$16 \cdot 1$	$16 \cdot 0$	$15 \cdot 8$	$15 \cdot 6$	$15 \cdot 1$	$15 \cdot 1$	$15 \cdot 2$	$15 \cdot 4$	$15 \cdot 7$	$16 \cdot 0$	16.0	$16 \cdot 0$	$16 \cdot 0$	$16 \cdot 0$	$16 \cdot 1$	$16 \cdot 1$	$15 \cdot 7$	$15 \cdot 9$	
Mar.	16	$16 \cdot 1$	$16 \cdot 0$	$15 \cdot$	$15 \cdot 8$	$15 \cdot 8$	15.	$16 \cdot 1$	16.0	15.8	$15 \cdot 3$	$14 \cdot 8$	$14 \cdot 6$	$14 \cdot 6$	$14 \cdot 9$	$15 \cdot 2$	$15 \cdot 5$	$15 \cdot 5$	$15 \cdot 6$	$15 \cdot 6$	$15 \cdot 8$	15.9	15.9	$15 \cdot 8$	$15 \cdot 8$	156	
Oct.	18.8	$18 \cdot 8$	$18 \cdot 8$	$18 \cdot 8$	$18 \cdot 8$	$18 \cdot 7$	$18 \cdot 7$	$18 \cdot 7$	$18 \cdot 8$	$18 \cdot 4$	$18 \cdot 1$	$17 \cdot 3$	$17 \cdot 0$	$17 \cdot 1$	17 -5	$18 \cdot 0$	$18 \cdot 2$	$18 \cdot 3$	$18 \cdot 3$	$18 \cdot 6$	$18 \cdot 5$	18.5	$18 \cdot 5$	18.5	$18 \cdot 3$	$18 \cdot 3$	
Nov.			18.8	18	18.9	$18 \cdot 7$	18	$18 \cdot 6$	$18 \cdot 4$	18.4	$18 \cdot 2$	$17 \cdot 7$	17	17.8	$18 \cdot 1$	$18 \cdot 2$	$18 \cdot 4$	$18 \cdot 5$	$18 \cdot 5$	$18 \cdot 6$	$18 \cdot 5$	18.6	$18 \cdot 5$	$18 \cdot 6$	$18 \cdot 6$	18.4	
Dec.	19.4	19•7	$19 \cdot 7$	$19 \cdot 7$	$19 \cdot 7$	$19 \cdot 6$	$19 \cdot 6$	19.4	$19 \cdot 3$	$19 \cdot 2$	$19 \cdot 0$	$18 \cdot 4$	$18 \cdot 3$	$18 \cdot 7$	$19 \cdot 0$	$19 \cdot 2$	$19 \cdot 3$	$19 \cdot 4$	$19 \cdot 5$	$19 \cdot 6$	19.4	$19 \cdot 4$	$19 \cdot 5$	$19 \cdot 5$	$19 \cdot 5$	$19 \cdot 3$	
Winter Means	$17 \cdot 6$	$17 \cdot 6$	$17 \cdot 6$	$17 \cdot 5$	$17 \cdot 5$	$17 \cdot 5$	$17 \cdot 4$	$17 \cdot 4$	$17 \cdot 3$	$17 \cdot 2$	$17 \cdot 0$	$16 \cdot 5$	16.2	$16 \cdot 4$	$16 \cdot 6$	$16 \cdot 9$	$17 \cdot 1$	$17 \cdot 2$	$17 \cdot 2$	$17 \cdot 3$	17•3	17•3	17•3	17.3	$17 \cdot 2$	$17 \cdot 2$	
April	$16 \cdot 6$	$16 \cdot 6$	$16 \cdot 6$	$16 \cdot 6$	16.5	$16 \cdot 6$	$16 \cdot 6$	$17 \cdot 0$	$17 \cdot 3$	$16 \cdot 8$	$16 \cdot 0$	15-2 1	$14 \cdot 9$	$15 \cdot 0$	$15 \cdot 4$	$16 \cdot 6$	$16 \cdot 2$	$16 \cdot 3$	$16 \cdot 2$	$16 \cdot 2$	$16 \cdot 3$	$16 \cdot 2$	$16 \cdot 3$	$16 \cdot 4$	$16 \cdot 4$	$16 \cdot 2$	
May	16.4	$16 \cdot 6$	16. 7	$10^{\circ} 6$	$16 \cdot 5$	$16 \cdot 7$	$16 \cdot 8$	16.9	$16 \cdot 9$	$16 \cdot 6$	$16 \cdot 2$	$15 \cdot 6$	$15 \cdot 5$	$15 \cdot 5$	$15 \cdot 6$	$15 \cdot 9$	$16 \cdot 2$	$16 \cdot 4$	$16 \cdot 7$	$16 \cdot 8$	$16 \cdot 7$	$16 \cdot 4$					
June	$17 \cdot 3$	$17 \cdot 4$	$17 \cdot 4$	17-5	17-5	$17 \cdot 4$	17•7	$17 \cdot 6$	$17 \cdot 3$	$16 \cdot 7$	$16 \cdot 4$	$15 \cdot 7$	$15 \cdot 8$	$15 \cdot 6$	$15 \cdot 7$	$16 \cdot 1$	$16 \cdot 7$	$17 \cdot 1$	$17 \cdot 3$	$17 \cdot 4$	17-5	17-5	17.6	17.4	$17 \cdot 4$	$17 \cdot 0$	
Jaly		17	17.5	$17 \cdot 5$	17-5	$17 \cdot 5$	17-5	$17 \cdot 3$	$17 \cdot 2$	$16 \cdot 7$	$16 \cdot 4$	$16 \cdot 11$	16	$16 \cdot 0$	$16 \cdot 0$	$16 \cdot 4$	16.8	$17 \cdot 3$	$17 \cdot 4$	$17 \cdot 3$	17.4	$17 \cdot 3$	$17 \cdot 2$	17.2	$17 \cdot 2$	$17 \cdot 0$	
Aug.	$17 \cdot 5$	17-5	17-5	$17 \cdot$	$17 \cdot 5$	17-5	$17 \cdot 7$	$17 \cdot 7$	$18 \cdot 0$	$17 \cdot 9$	$17 \cdot 6$	$17 \cdot 11$	16•7	$16 \cdot 7$	$17 \cdot 0$	17-2	$17 \cdot 6$	$17 \cdot 8$	$17 \cdot 8$	$17 \cdot 6$	17•7	17•7	17•7	$17 \cdot 6$	17.7	$17 \cdot 5$	
Sept.	$18 \cdot 6$	$18 \cdot 6$	$18 \cdot 6$	18.5	$18 \cdot 5$	$18 \cdot 5$	$18 \cdot 6$	18.8	$19 \cdot 1$	$19 \cdot 0$	$18 \cdot 7$	$18 \cdot 3$	$18 \cdot 0$	17-7	$17 \cdot 6$	$17 \cdot 7$	18.0	$18 \cdot 1$	$18 \cdot 1$	$18 \cdot 2$	$18 \cdot 3$	$18 \cdot 4$	$18 \cdot 3$	$18 \cdot 4$	18.4	$18 \cdot 4$	
Summer Meann   Mernm	17-3	17.4	\| $17 \cdot 4$	$17 \cdot 4$	[17-3	\|17.4	17-5	17-6	17.6	17.3	16.9	\|16.3		16-2	16.1	16.2\|	16.5	16.9\|	27-2	$17 \cdot 3$	$17 \cdot 2$	17.3	$17 \cdot 3$	17.3	17.3	$17 \cdot 3$	17.1

TABLE XCIX.-Diumal Inequatity of the Dip at Dehra Dün in 1924, (deduced from TABLE XCVIII)


## Chapter III

ASTRONOMICAL LATITUDES

(No. 13 Party)<br>by Major C. M. Thompson i.a.

104. Latitude observations in abeyance since 1915 were resumed in 192

Latitude operations 1923-1925.
105.

Selection of
latitude
stations.
106.

Stations in Bihar and
Orissa and in the United Provinces.
107.

Stations in Assam.
108.

Instruments when Major Mason observed at 4 stations in Kashmir. Next duikg the seasons 1923-24 and 1924-25 latitude was observed at 27 station, 4 in Bihār and Orissa, 9 in the United Provinces, 3 in Eastern Bängal, 3 in the Surma valley, 7 in the Brahmaputra valley and 1 in the Khisi and Jaintia hills.

The stations in Bihãr and Orissa lay along the B. \&. N.W. Railmay to the NE. \& SE. of Gorakhpur ; those in the United Provinces along the B. \& N.W. Railway and O. \& R. Railway, N. of Goralshpur and along the line Gorakhpur, Benares, Partābgarh, Ajodhya (Lakarmandi Ghāt).

The selection of geodetic stations near railway lines and river steamer routes as sites for latitude stations was made with a view to economy. As only one officer was available, the sites were chosen by the observer and low brick pillars were constructed with quidk drying cement on which the zenith telescope could be set up on its wooden stand.

The stations in Bihir and Orissa and in the United Provinces lar in the Gangetic plain where the attraction of the Himalayas on the north and of the mass of hills to the south were likely to cause variations in deflection according to the relative positions of the stations mith reference to the hill ranges on either side.

Similarly in the case of the latitude observations taken for the first time in Assam, the close attractions of the Himalayas as well as of the Khāsi and Jaintia hills were likely to show interesting effects on the derived deflections.

The Zenith Telescope No. I by Messrs. Troughton and Simms mss used throughout the period, except at Kāshdaha Tower Station whare owing to the flooded state of the country, and difficulty of transporting bricks for pillars etc. the large prismatic astrolabe by M. Jobin was used. This zenith telescope, of which a photo appears in G.T.S. Vol. XVIII has been in use for the last 20 years.

The diaphragm of the zenith telescope had been rewired before the field season, and the new wiring was much finer and clearer than formerly.



Reference numbers and Values of " $m$ " and " $M$ " for all Geodetio Series of the Indian Triangulation. (See Records of the Survey of India Vol. IX, p. 137).
For 42 Series entering the Simultancous Grinding (shown in italics below) Man Square $M= \pm 1 \cdot 04$ For Series up to No. 94

Mean Square Ma $= \pm 1 \cdot 61$



During the Assam observations the weather was not favourable. The observations were sometimes hampered by rain and clouds; humidity was generally excessive. As a result of the humidity, the weather during the later portion of the nights was generally misty, and the mist used to condense thickly on the objective of the telescope or the prism of the astrolabe so that observations had usually to be stopped at $2 \cdot 30 \mathrm{a} . \mathrm{m}$. The astrolabe was found particularly troublesome in this respect as not only did all the faces of the prism become clouded with moisture, but the surface of the mercury in the trough also became sullied and required cleaning every few minutes.

Determinations of the value of one division of each of the level scales were made at the beginning and end of each field season. They gave the following results:-

	1923-2t			1924.25		
	Beginning	End	Value adopted	Beginning	End	Value adopted
Level No. 6	O'. 8067	$0^{\prime \prime} .8366$	$0 \cdot 822$	$0^{\prime \prime} .8010$	$0^{\prime \prime} .8816$	$0^{\prime \prime} .841$
Level No. 9	$0 \cdot 9186$	0.9082	0.913	0.9352	$0.890 \pm$	0.913

In 1923-24, the micrometer value was obtained by observations of 80 couples of stars, the mean value of one division being determined as $0^{\prime \prime} \cdot 69159$. This value proved satisfactory for all the stations except Rämnagar which was recomputed with a lower value ( $0^{\prime \prime} \cdot 69040$ ). This gave an unchanged value of latitude but closer accordance between results.

In 1924-25 the micrometer value was obtained by observations of 41 couples of stars the mean value of one division being determined as $0^{\prime \prime} \cdot 69160$. This value proved satisfactory for all the stations.

The results of the observations are shown in Tables I and II.
111.

Micrometer value 1923-24.

## 112.

Micrometer value 1924-26.
113. Results of observations,
T.IBLE I.—Results of ohservation, season 1923-24

TABLE II.-Results of obserirition scason 1924-25

Name of station	Seconds of mean colat.   E W   (1)	Seconds of mean colat. W E (2)	Difference $(1)-(2)$	Secouds of mean colat. from obsns. giving + ve micrometer corrections $=\mathrm{C}+$	Mean + ve micrometer corrections $=\mathrm{M}+$	Seconds of mean colat. fiom obsns. giving - ve micrometer corrections $=\mathbf{C}-$	Mean-ve micrometer corrections $=\mathrm{M}$ -	Apparent error of micrometer $\frac{(C+)-(C-)}{(M+)+(M-)}$	Probable error of onit weight
Kāshdaha	...	...	. 0	(taken by	Astrolabe)	...	...	"	"
*Mymensingh...	14.12	14.44	$-0.32$	14.12	1726	14.40	1103	-0.000099	$\pm 0 \cdot 279$
Abangi Tila ...	51.85	51.55	+0.30	51.82	1303	51.66	1164	+0.000065	$\pm 0.263$
Dali Tila ...	44.99	44.92	+0.07	44.95	1242	$44 \cdot 98$	116.	-0.000012	$\pm 0.274$
Salāma Tila ...	$8 \cdot 60$	8.47	+0.13	$8 \cdot 53$	1365	$8 \cdot 52$	1171	+ 0.000004	$\pm 0 \cdot 290$
Golāghāt ...	59.44	59.63	$-0.19$	59.72	797	59.24	1593	+0.000201	$\pm 0.314$
Phakwādal ...	18.50	$18 \cdot 17$	+0.33	$18 \cdot 35$	1078	$18 \cdot 36$	1417	-0.000004	$\pm 0.201$
Dibragarh ...	54.00	53.89	+0.11	54.09	1017	53.78	1118	+0.00014\%	$\pm 0.243$
Sildubi ...	$56 \cdot 17$	$55 \cdot 67$	+0.50	$56 \cdot 02$	1738	$55 \cdot 76$	1434	$+0 \cdot 000082$	$\pm 0 \cdot 309$
$\dagger$ Ganhäti .	32.21	31.82	+0.39	32.00	1113	31.99	1919	$+0.000003$	$\pm 0.236$
Jāmtolla	$42 \cdot 34$	$41 \cdot 67$	$+0.67$	42-14	1427	41.88	1582	+0.000086	$\pm 0.253$
Shillogg	7-71	7.58	$+0 \cdot 13$	7.68	2158	7.62	1899	+ 0.000015	$\pm 0.254$
Raikusni	$45 \cdot 55$	$45 \cdot 34$	$+0 \cdot 1$	$45 \cdot 47$	1782	$45 \cdot 45$	1611	$+0.000006$	$\pm 0 \cdot 248$
Atīro Bãnki ..	13.53	$13 \cdot 39$	+0.14	13.65	200:	13.29	2028	+0.000089	$\pm 0 \cdot 256$

[^15]TABLE III.—Deflections of the plumb-line, season 1923-24

Name of station	Instru. ment used	Height	Namber (if stars	Number of observations	Longitude			Geodetic latitude			Seconds of astronumical latitude	Probable error	Deflections $(\mathrm{A}-\mathrm{G})^{\circ}$
		feet			$\bigcirc$	,	"	-	,	"		"	"
Shithpar	Z. Telescope	173	53	${ }^{61}$		47	25.37	26	24	$42 \cdot 37$	$42 \cdot 73$	$\pm 0.070$	+ 0.36
Sināriã	"	239	41	40	85	15	54.25	26	45	12.55	6.26	$\pm 0.08{ }^{2}$	- 6.29
Sista	"	267	35	36	84	40	¿4. 56	27	1	44.04	31.98	$\pm 0.121$	- 12.06
Rāmnagar ...	"	312	40	41		19	$35 \cdot 56$		9	4.09	$50 \cdot 42$	$\pm 0.108$	- 13.67
Mathial	"	334	42	46		51	$32 \cdot 13$	27	8	$4 \cdot 37$	54.11	$\pm 0.075$	- 10.26
Rājajbari	"	267	56	70		15	$35 \cdot 49$		54	$3 \cdot 04$	$2 \cdot 12$	$\pm 0.077$	- 0.92
Sambarsa	"	315	50	54		21	18.45	27	11	26.33	16.33	$\pm 0.084$	- 10.00
Baziāpar	"	267	48	52		23	$2 \cdot 28$	26	15	7.72	15.45	$\pm 0.084$	+ 7.73
Kanann	"	270	53	54		23	51.38			$3 \cdot 62$	13.38	$\pm 0.065$	+ 9.76
Rāmàpura	"	356	50	53		5	$40 \cdot 58$	25	44	55.09	3.24	$\pm 0.065$	+ 8.15
Sturaza	"	348	47	${ }^{1}$		7	30.01		16	$23 \cdot 86$	$33 \cdot 74$	$\pm 0.066$	- 9.88
Bisanl ...	"	342	43	43		20	54.43	26	40	37.38	$42 \cdot 77$	$\pm 0.076$	+ 5.39
Kopā	"	365	56	66	8.	12	48.22	27	7	$3 \cdot 74$	1.24	$\pm 0.071$	2.50

WABLE $\boldsymbol{Y}$.——Deflecliun Of the plumb-line, sensan 1924-25

Name of station	Instru- ment nsed	Height	Namber of stars	Number vations taken	Longitude			Geodetic latitude			Seconds of astronomical	Probable error	Deflections $(\mathbf{A}-\mathbf{G})^{*}$
ashdaha	Astrolabe	feet 77	40	80	89	31	57.94	25	29	$48 \cdot 63$	$44 \cdot 89$	$\pm 0^{*} \cdot 120$	- $3^{\prime \prime} 74$
Mymensingh ...	Z. Telescope	47	43	37	90	24	27.70	24	45	$49 \cdot 42$	$45 \cdot 71$	$\pm 0.068$	- 3.71
Abangi Tila ...	,	251	32	36	91	51	$37 \cdot 36$	24	56	23.89	$8 \cdot 26$	$\pm 0.068$	$-15 \cdot 63$
Dali Tila ...	,	154	49	49	92	21	$41 \cdot 62$	24	51	26.21	15.02	$\pm 0.060$	-11.19
Salāma Tila ...	"	220	47	50	92	48	36.93	24	51	7.72	51.47	$\pm 0.062$	$-16.25$
Golăghāt ...	,	315	48	39	93	57	27.83	26	30	$47 \cdot 64$	0.43	$\pm 0.083$	+12.79
Phakwādal ..	"	302	46	45	9	12	41-18	26	50	$33 \cdot 88$	41.63	$\pm 0.048$	+ 7.75
Dibrugarh ...	"	342	40	39	9	54	$35 \cdot 84$	27	29	$13 \cdot 36$	6.05	$\pm 0.060$	- 7.31
Sildabi	"	240	46	47		47	$0 \cdot 62$	26	37	$3 \cdot 32$	$4 \cdot 11$	$\pm 0.068$	+ 0.79
Gauhāti	"	177	38	34		45	0.00	26	11	$17 \cdot 11$	28.02	$\pm 0.059$	+10.91
Jāmtolla	"	188	38	39		35	33.89	26	28	14.75	17.98	$\pm 0.065$	+ 3.23
Shillong ...	"	¢441	33	34		51	$9 \cdot 65$	25	31	48.84	$52 \cdot 09$	$\pm 0.072$	+ 3.25
Raikusni		803	38	31		39	$47 \cdot 24$	26	8	11.37	14.51	$\pm 0.063$	+ 3.14
Atäro Bādki ...	,	113	34	32		28	$3 \cdot 10$	26	4	$50 \cdot 62$	46.53	$\pm 0 \cdot 070$	- 4.09

* A positive valne of $(\mathbf{A}-G)$ denotes a southerly deflection of the plumb-line.

113. The 1923-24 stations were all situated in flat country, so thas (Conta.) there were apparently no local causes for plumb-line deflection at on of them.
114. 

Hayford residuals.

The topographical effects attributable to visible masses have ber estimated from maps, and the Hayford deflections deduced thereftoo on the hypothesis of a uniform isostatic compensation at the depth d 113.7 kilometres. The following table shows the residuals for te above stations unexplained by the Hayford hypothesis:-

Table V.-Values of Hayford Residuals, seasons 1923-25

Name of station	Observed astronomical deflections (1)	$\begin{gathered} \text { Estimated } \\ \text { topo } \\ \text { deflections } \\ (: 亡) \end{gathered}$	Hayford deflections   (3)	Unexplained residuals (1) $-(3)$
1923.24				
Riāmnagar	$-13 \cdot 67$	-86.36	$-7 \cdot 18$	- 6.49
Saunbarsa	-1.0.00	-77.02	$-4.37$	- 5.63
Sikta	-12.06	$-85.91$	- 6.59	- 5.47
Mathia	-10.26	-81.39	$-5.27$	- 4.99
Siniria	- $6 \cdot 29$	$-83 \cdot 20$	$-5.57$	- 0.72
Кора	$-2.50$	-66.29	$-2.59$	+ 0.09
Rājabari	- 0.92	$-70 \cdot 19$	- 3.05	+ $2 \cdot 13$
Shäbpar	+ 0.36	$-77 \cdot 64$	$-3.94$	+ 4.30
Bisaul	$+5 \cdot 39$	$-58.82$	- 1.38	+6.77
Riamãpura	+ 8.15	$-47 \cdot 18$	- 0.32	+ 8.41
Laninpar	+ 7.73	$-57 \cdot 92$	- 1.12	+ 8.80
Kanaun	+ 9.76	$-51.58$	$-0.17$	+ 9.93
Sirwiat	+ 9.88	$-51.73$	- 0.77	+10.65
1934.2.5	In orter of	served defl	ctions	
Salima Tila	- 16.25	-57.44	$-3.18$	- 13.07
Abangi Tila	$-15 \cdot 63$	-60.14	- $4 \cdot 31$	-11.32
Dali Tila	$-11.19$	-56.02	$-2 \cdot 79$	-8.40
Wibrogarh	$-7.31$	-70.02	- $4 \cdot 20$	- 3.02
Atīro Bāoki	- 4.09	-79.32	- 3.97	- 0.12
Kinshdahit	$-3.74$	-64.91	- 2.03	- 1.71
Mymensingl	$-3.71$	-55.48	- 1.74	- 1.97
Sidrubi	+. 0.79	-77.20	- 5.63	+ 6.42
Raiknani	+ 3.14	-72.04	$-2.38$	+ 6.52
Tämtolla	$+3 \cdot 23$	-80.64	- $5 \cdot 40$	+ 8.63
Shillons	+ 3.25	-59.62	+ 1.96	+ 1.29
Phakwidlal	$+7.75$	-61.50	- 1.29	+ 9.04
Gaubāti	+10.91	-65.47	$+0.43$	+10.48
Golighat	+12.79	- 59.0ñ	- 0.03	+12.82

## Average Section due $N$ and $S$ through KOPA , (Bisaul, Sirwāra and Rāmāpura). Meridians of $81^{\circ}-82^{\circ}$ roughly.



These stations have been plotted at their relative distances from the 500 ft . contour and not by latitude, as they lie between longitude $81^{\circ}$ and $82^{\circ}$ and not actually on one meridian.

Average Section due N. and S. through MATHIA, (Ramnagar, Sikta, Sinaria, Saunbarsa, Shahpur, Rajabari, Baniapar and Kanaun). Meridians of $83^{\circ}-86^{\circ}$ roughly.


These stations have been plotted at their relative distances from the 500 ft . contour and not by latitude, as they lie between longitude $83^{\circ}$ and $86^{\circ}$ and not actually on one meridian.

Deflectlons at old latitude stations from table at p. 14 of Professional Paper 5 plotted in red for meridians $81^{\circ}-82^{\circ}$ and $84^{\circ}-86^{\circ}$.

Horizontal Scale 1 Inch = 192 miles approximately.
Deflections exaggerated.

The position of the stations of Table V is shown on the latitude Chart No. III. In addition two average or representative sections (Plate VI) have been prepared running due north and south through the west and east groups of the stations, Rāmnagar to Sirwāra. On these sections the vertical scale of heights as well as the deflections have been shown on an exaggerated scale.

The stations Salāma Tila to Golāghāt have been arranged in order of their deflections from the greatest negative to the greatest positive deflections. The large residuals i.e. differences between Hayford and observed deflections, both negative and positive, would show that this theory cannot account for the deflections actually found at the various stations, and that the condrtion of uniform isostatic compensation is far from being realised in this area.

The deflections at the old latitude stations on approximately the same meridians have been shown in red on these sections in order to illustrate roughly the changes of deflections met with from north to south.

It will be seen from a comparison of the Tables No. V and the sections, that on the Gangetic plain, the Hayford residuals increase steadily from north to south viz:-from $-6^{\prime \prime} \cdot 49$ to $+10^{\prime \prime} \cdot 65$. The Hayford theory, though reducing the large estimated negative deflections of the topography, does not account for the positive or negative deflections actually observed. To analyse typical instances, the total positive or southerly effect of the topographical deflection at Rāmāpura has been only estimated at $+6^{\prime \prime} \cdot 26$, the negative deflection due to sea areas totals - $4^{\prime \prime} \cdot 87$, and northerly negrative deflections total $-46^{\prime \prime} \cdot 37$. The reduction by multiplication by Hayford factors (less than l) of the total positive value of $+6^{\prime \prime} \cdot 26$, even when accompanied by a decrease of the negative totals of $-4^{\prime \prime} \cdot 87$ and $-46^{\prime \prime} \cdot 37$ in the same manner, merely reduces the Hayford result to $-0^{\prime \prime} \cdot 32$, a negative value, whereas a deflection of $+8^{\prime \prime} \cdot 15$ was actually observed. Similarly at Rāmnagar Hayford factors merely reduce an estimated total topographical deflection of $-86^{\prime \prime} \cdot 36$ to $-7^{\prime \prime} \cdot 18$, whereas a deflection of $-13^{\prime \prime} \cdot 67$ was actually observed.

If the average width of the Gangetic plain in this area be taken as 172 miles from the 500 -feet contour on the Himalayan side to the 500 feet contour to the north of the southern mountain mass, the average distances at which deflections occur, reduced to this width, are approximately as shown in table at page 166 .
115.

Representative Sections.
116.

Comparison
with sections.
117.

Summary.
117. (Contd.)


From the above summary of the rate of change of deflections from negative to positive values, and particularly from the evidence of the slow rate of increase of positive values in the case of the last 4 stations it would appear that the stations, as we proceed southwards, are gradur ally coming more vertically above the "hidden chain" or subterranean protuberance of excessive density, referred to in Professional Papet No. 5, whicin is indicated as oncurring in the neighbourhood of latitude $22^{3}$ in this part.

The difference of densities: i.e. deficiencies under the Himalaya and excesses under the plains and southern masses, postulated by the system of uniform isostatic compensation, are inadequate to account for the deflections actually observed. The Himalayan attraction would appear to emanate from a qreater depth and material of lesser density, and the attraction of the "hidden chain" would appear to emanate from d lesser depth and denser matcrial than can be accounted for on the Hayford hypothesis.


## Chapter IV

# GRAVITY AND LATITUDE 

(No. 14 Party)
ву

Captain E. A. Glennie d.s.o., r.e.

and
Captain G. H. Osmaston m.c., r.e.
Pendulum observations, in abeyance since 1915, were resumed in season 1923-24 when eleven stations extending from Pilibhit (U.P.) to Motihari (Bihär) were occupied. A list of the stations is given in Table VI. They are all in the Gangetic plain and their immediate surroundings are flat. All these pendulum observations were made by Captain Glennie.

Thanks to the kindness of the local officials good observing rooms were available at every station. The hourly changes in temperature are shown in Table I. These changes give an indication of the temperature
118.

Penduluin stations 1923-24.
119.

## Temperature

 control. control, but bear no definite relation to the lag in temperature of the pendulum behind the air temperature in the pendulum case. The temperature of the pendulum has been determined throughout by reading a thermometer in a dummy pendulum, so no lag corrections have been necessary.TABLE I.-Howrly changes in temperature, season 1923-24

Name of station	Night		Day		Mean	
		Hourly change		Hourly change		Hourly change
Dehra Dūn	$19 \cdot 4$	$\begin{array}{r} 0 \\ +0.08 \end{array}$	$19 \cdot 2$	$\begin{array}{r} 9 \\ +0 \cdot 11 \end{array}$	$\stackrel{\circ}{9 \cdot 3}$	$\begin{array}{r} \circ \\ +\stackrel{\circ}{0} \cdot 10 \end{array}$
Etawah	$22 \cdot 9$	$+0.13$	$22 \cdot 8$	+0.19	$22 \cdot 8$	+0.16
Fatehgarh	$19 \cdot 4$	$+0.09$	$19 \cdot 3$	+0.14	$19 \cdot 3$	+ $0 \cdot 12$
Pilibhit	$17 \cdot 6$	+0.11	17.3	+0.26	$17 \cdot 4$	+ 0.19
Shähjahēnpur	$16 \cdot 8$	+0.02	16.0	$+0.21$	16.4	+0.12
Sitanpar	$15 \cdot 6$	$-0.22$	14.4	+0.40	15.0	+0.09
Sonãripur	$15 \cdot 1$	$+0.15$	$4 \cdot 7$	+0.33	14.9	$+0.24$
Bahraicl	18.8	+0.10	13.4	$+0.19$	$18 \cdot 6$	+0.15
Ctomrlà	$19 \cdot 7$	$+0.11$	i9.2	+0.18	$19 \cdot 4$	$+0.15$
Gainsari	18.9	+0.09	18.5	$+0.28$	$18 \cdot 7$	+0.19
Bagaha Ghãt,	19.9	$+0 \cdot 16$	$19 \cdot 4$	+0.35	$19 \cdot 7$	+0.26
Motihäri	21.7	+0.23	21.6	$+0.31$	$21 \cdot 6$	+0.27
Dehra Dūn	$20 \cdot 1$	$+0.19$	$19 \cdot 8$	$+0.21$	19.9	$+0.20$

120. 

Fiexure measure. monts.

Observations for the flexure of the stand were made at the com. mencement and close of work at each station, two sets being taken ass rule. The mean values before and after work and the adopted valuk are shown in Table II.

TABLE II.-Mean and adopted values of flearre, season 1929-24 (The unit is $10^{-7} \mathrm{sec}$.)

Name of station	Date	Mean observed flexure	Differences	Adopted flesure
	1923			
Dehra Dīn	Nov. 9th ,, 14th \& 15 th	$\begin{aligned} & 52 \cdot 41 \\ & 53 \cdot 77 \end{aligned}$	$1 \cdot 36$	53
Etāwah	Nov. 26th \& 27th Dec. 1st	$\begin{aligned} & 54 \cdot 11 \\ & 53 \cdot 04 \end{aligned}$	$1 \cdot 07$	54
Fatehgarb	,. 6th   ,. 10th	$\begin{aligned} & 58.72 \\ & 57.72 \end{aligned}$	$1 \cdot 00$	58
Pīlibhit	., 16th	$\begin{aligned} & 54 \cdot 22 \\ & 56 \cdot 27 \end{aligned}$	$2 \cdot 05$	55
Shähjahāopur	, ${ }_{\text {, }}$ 26ith	$\begin{aligned} & 52 \cdot 27 \\ & 49 \cdot 63 \end{aligned}$	$2 \cdot 64$	51
	1924			
Sitajpur	$\begin{gathered} \text { Jan. 12th } \\ \text { " } 16 \text { th } \end{gathered}$	$\begin{aligned} & 52 \cdot 54 \\ & 51 \cdot 40 \end{aligned}$	$1 \cdot 14$	52
Sonaripur	", 22nd	$\begin{aligned} & 83 \cdot 87 \\ & 85 \cdot 66 \end{aligned}$	$1 \cdot 79$	85
Sahraich	$\begin{gathered} \text { Feb. } 2 \text { nd } \\ \because \quad 5 \mathrm{th} \end{gathered}$	$\begin{array}{r} 49 \cdot 95 \\ 48 \cdot 82 \end{array}$	$1 \cdot 1: 3$	49
Gondi	$\begin{array}{ll}\prime \prime & 7 \mathrm{th} \\ \# & 10 t h\end{array}$	$\begin{aligned} & 49 \cdot 18 \\ & 47 \cdot 14 \end{aligned}$	$2 \cdot 06$	48
Mainsari	$\begin{array}{ll} , \quad 11 t h \\ , & 14 . t h \end{array}$	$\begin{aligned} & 53 \cdot 15 \\ & 53 \cdot 22 \end{aligned}$	$0 \cdot 07$	53
Bagaba Gbit	$\begin{array}{ll} . . & 19 \mathrm{th} \\ \cdot . & 22 \mathrm{nd} \end{array}$	$\begin{aligned} & 59 \cdot 45 \\ & 59 \cdot 04 \end{aligned}$	$0 \cdot 41$	59
Motihhri	.. 26 th .. 29th	$\begin{aligned} & 46 \cdot 23 \\ & 46 \cdot 53 \end{aligned}$	0:31	46
Dehre Dïn	$\begin{array}{cl} \text { Mar. } & \text { Ith } \\ \text {.. } & 1 \text { Cth \& } 17 \mathrm{th} \end{array}$	$\begin{aligned} & 15 \cdot 04 \\ & 42 \cdot 18 \end{aligned}$	$2 \cdot 80$	44

The clock rate was determined by Mr. R. B. Mathur. At the commencement of the field season a break-circuit chronometer (No. 6688 by Victor Kölhberg) was employerl. From the beginning this showed big fluctuations in rate, and after the 1st day's observations at Shāhjahanpur (the 4th field station) the fluctuations became so big that the results were useless. The old pendulum clock (No. 238 by Strasser and Robde) was then taken into use for the remainder of the season. This clock had a very steady rate but gave trouble owing to a defective electric circuit through the clock, which was remedied on return 10 Dehra Dūn. The mean probable error of clock rate, determined from obselvations on two successive nights, was $\pm 0.02$ seconds; and the mean probable error of the rate derived from observations to one star on two successive nights was $\pm 0.07$ seconds. The corresponding error in the mean time of vibration is only $\pm 1 \times 10^{-7}$ seconds.

The probable error of a single observation of the mean pendulum is $\pm 7 \times 10^{-7}$ seconds. The differences between individual and mean pendulums are given in Table III. There appears to have been an abrupt change in the times of vibration of pendulum No. 138 commencing at
121. Clock rate.
122.

Probable arror of an observation. Sonaripur and remaining fairly constant thereafter. No reason has been found for this change which is comparable to the change in pendulum No. 137 in December 1906 (vide Professional Paper No. 10, p. 160). It Gondi the times of vibration of pendulum No. 137 were inconsistent mith the others. This is believed to be due to an exceptional accumulation of errors in clock rate, temperature observations etc. and not to a temporary change in length. This pendulum has been ignored when deducing the results at this station.

TABLE III.-Differences between individual and mean pemilulums, scasou 1923-24. (The unit is $10^{-7} \mathrm{sec}$.)

Name of station		137	$v$	138	$v$	139	v	140	$v$
Dehra Dīn		-60	+ 5	- 2478	-16	+ 909	-2	+ 1627	-7
Etawah		-63	+ 2	- 2487	-25	$+919$	-12	+ 1631	-11
Fatelogarh		-73	-8	- 2469	-7	+920	-13	+ 1623	- 3
Pilillit		-59	+ 6	- 2142	-20	+918	-11	+ 1624	- 4
Stihihialampur		-70	- 5	-2180	-18	+ 913	- 6	$+1637$	-17
Sitipur		-79	-1.4	-2436	+ 26	+ 901	$+3$	+ 1613	+ 7
Suniripur		-69	- 4	- 2462	0	+ 909	- 2	+1633	- 3
Ihal\|raiel/		-57	+ 8	- 2450	+ 12	+ 894	+ 13	+ 1613	+ 7
Gimelia	...	-25	+40	- 2465	- 3	+ 889	+18	+ 1602	+18
fainsari		-74	- 9	- 24.14	+21	+ 904	+ 3	+ 1611	+ 9
Bagala Gliat		- 71	-	$-2141$	+ 21	+ 901	$+6$	+ 1611	+ 9
Mrathari		-6.4	-3	-2155	$+7$	+ 903		+ 1620	0
Delira Dinn		-71		-2456	+ 6	+ 907	0	+1620	0
Heane		-65		- 2462		+ 907		+ 1620	

123. The times of vibration of the pendulum at Dehra Dün are giren Times of vibration at Dehra Dun. in Table IV. Since there has been a change in pendulum $\mathrm{N}_{0}$. 1 isj from Sita apur onwards, the value of the mean pendulum at Delra Din must be considered changed also. Pendulums No. 137, 139 and 1 ifi have remained unchanged: the mean of their values at Dehra Dinn beginning and end of season has therefore been adopted for all stations For pendulum No. 138 the value obtained at Dehra Dūn in Novemte i. e., 0.5074986 seconds has been adopted for the first four station and the value at Dehra Dūn obtained in March for the remainder.

TABLE IV.-Times of vibration at Dehra Dūn, season 192384

late	137	138	139	140	Mean
1923					
Nov. 9th \& 10th	$\stackrel{s}{0 \cdot 5072557}$	$\stackrel{s}{0 \cdot 5074995}$	$\stackrel{s}{0.5071587}$	$\stackrel{s}{0.5070866}$	${ }^{8}$
, 10th \& 11th	2580	4987	1620	0879	2031
" 11th \& 12th	2572	4977	1597	0882	$23 i 4$
, 13th \& 14th	2564	4984	1590	0895	236
Means $\quad .$.	$0 \cdot 5072568$	0.5074986	$0 \cdot 5071599$	0.5070881	0.507\%
1924					
March IOth \& 11 th	0.5072561	0.5074941	0.5071592	$0 \cdot 5070876$	0.50724
,, 114.h\& 12th	2876	4955	1598	0880	230.
, 14.6 \& 15th	2577	4968	1587	c879	293
,. 16thsioth	2574	4963	1600	0890	256
Means	(1.5072572	$0 \cdot 50791957$	$0 \cdot 5071594$	(1.5070881	$0 \cdot 5173^{200}$

Adropled mean times of vibration

Nov. \& Dec. 1923	0.5072870	$0 \cdot 507+986$	0-5071597	0-5070881	0.50izin
Jan.to Mar. 1924	$0 \cdot 5072570$	$0 \cdot 5074957$	0-50715.97	$0 \cdot 6070881$	507200

In Table $V$ are shown the mean times of vibration at each field station with the value of $g$ deduced therefrom.
124.

Values of g .

TABLE V.-Observed values of $g$, season 1923-24


The summary of the results of $1923-24$ season's work is given in Table VI.

[^16]TABLE VI.—Abstract of results, season 1923-24

Name of station	Latitude N	Longitade E	Height above M.S.L.	Corrections			$\gamma_{0}$	$\begin{aligned} & \gamma_{\text {A }} \\ & \text { (Free } \\ & \text { air) } \end{aligned}$	$\begin{gathered} \gamma_{\text {B }} \\ \text { (Bou. } \\ \text { guer) } \end{gathered}$	$\begin{aligned} & \gamma_{\mathrm{C}} \\ & \text { (Hay- } \\ & \text { ford) } \end{aligned}$	$g$	$g-\gamma_{\text {A }}$	$g-\gamma_{B}$	$g-\gamma_{C}$
				For height	Bouguer	Hayford								
Etimah ...		$\begin{array}{rrrr}\text { ¢ } \\ 79 & 00 & 55\end{array}$	$\begin{gathered} \text { feet } \\ 492 \end{gathered}$	dynes										
	$\begin{array}{lll} 26 & 47 & 00 \\ 27 & 22 & 06 \end{array}$			-046	+017	-022	979.079	979.033	979.050	979.011	978.998	-0.035	-0.052	-0.013
Fatehgarh ...		79	493	-046	+017	-023	979-121	979-075	979-092	979.052	979.023	$-0.052$	-0.069	-0.029
Pīlibhīt ...   Shähjahānpur	$\begin{array}{lll} 28 & 39 & 05 \end{array}$	$\begin{array}{lll}79 & 49 & 31\end{array}$	610	-057	+021	-059	979.216	979-159	979-180	979-100	979-045	-0.114	-0.135	-0.055
	$27 \quad 5421$	$\begin{array}{lll}79 & 55 & 52\end{array}$	510	-048	+ 017	-034	979-161	$979 \cdot 113$	979.130	979.079	979.040	$-0.073$	$-0.090$	-0.039
Sitajpar ...	$\begin{array}{lll}27 & 33 & 13\end{array}$	$80 \quad 4108$	449	-042	+015	-036	979-135	979.093	979-108	979-057	979.003	$-0.090$	$-0.105$	-0.054
Sonãripur ...	$\begin{array}{lll}28 & 27 & 39\end{array}$	80) $47 \quad 24$	514	-048	+017	-075	979-203	979-155	979-172	979.080	979.013	-0.142	-0.159	-0.067
Bahraich ...	273402	81 3:5 41	403	-038	+014	-059	979-136	979.098	979-112	979.039	978.977	$-0.121$	$-0.135$	-0.062
Gond:	$27 \quad 05 \quad 21$	$81 \quad 205$	352	-033	+012	-038	979-105	979-072	979-084	979-034	978.949	$-0.123$	$-0.135$	-0.085
Gainsari ...   Bagaba Ghāt   Motibañi ...	$\left\|\begin{array}{ccc}27 & 31 & 43 \\ 27 & 08 & 06 \\ 26 & 39 & 10\end{array}\right\|$	$82 \quad 35 \quad 45$	364	-034	+012	-065	979-133	979-099	979-111	979-034	978.943	$-0.156$	$-0.168$	-0.091
		$\begin{array}{lll}84 & 03 & 05\end{array}$		-028	+ 010	-065	979-104	979.076	979-086	979-011	978.923	$-0.153$	$-0.163$	-0.088
		$\begin{array}{lll}84 & 03 & 05 \\ 84 & -5 & 35\end{array}$	298	$\left\lvert\, \begin{aligned} & -028 \\ & -081\end{aligned}\right.$	+010 +007	$\left\lvert\, \begin{aligned} & -065 \\ & -054\end{aligned}\right.$	$979 \cdot 104$ 979.069	979.048	979-055	$978 \cdot 994$	978.895	-0.153	-0.160	-0.099
		845435		-021	$+007$									




The results clear up various doubtful features referred to in Professional Paper No. 15, page 137. It is now evident that there are no belts of highl density running eastward from Agra or Jhānsi to Allahābãd and the large low density area south east of Jhânsi is connected directly to the main trough at the foot of the Himalayas with no ridge of higher density intervening. This causes a smoothing out of the main irregularities in the contours and makes the apparent trough of low density between Gesupur and Hathras quite an insignificant feature. The revised contours are shown in Charts VIII and IX.

During recess an attempt was made to determine the constants of two quartz pendulums by observations in Dehra Dūn and Mussoorie. Most unfortunately just at the completion of the work both pendulums mere broken while being carried down to Dehra Dūn. The work was not entirely wasted, as it led to a reconsideration of all the various conditions of observation (more particularly the temperature effects) and as a result it may be possible in future to get good results with brass pendulums in a tent, which had previously been considered impossible.

The four brass von Sterneck pendulums Nos. 137, 138, 139 and 140 obtained in 1902 were taken to England in April 1924 to redetermine their times of vibration at Kew. The results of these observations are given below :-

Times of vibrations at Kew

Peadulum No.	137	138	139	140
June \& Octobcr   1903	$s$   0.5067066	$s$   0.5059486	$s$   0.5066100	$s$   0.5065335
Juuc 192.5	0.5067023	0.5069411	0.5066040	0.5065329

The times were obtained by wireless time siguals from the Eiffel Tower. The pendulums were also swung at Cambridge, which is to be the base station for the new eravity survey of England. Details of the original observations are to be found in Professional Paper No. 10, Chap. I. The 1925 observations were made by Lt.-Colonel H. McC. Cowie, r.E.

It had bren intendel to make observations in Assam during the minter season 1921-25 and in Kashmīr during the summer of 1925. As however, the pendulum; had not arrivell back from England by Oetober 1924, the Assam programme was abandoned and the desigu and manufacture of new pendulums was put in hand.

The three pendulums were of brass cast with the stem and bob in one piece. Through the kindness of Colonel W. Bell, Electrical En-

## 127.

Observations in England.

## 128.

Design and manufacture of new pendulums.
128. gineer to the Mussoorie Municipality, the casting and rough turniwe
129.
for the pendulums and the fine turning and fitting were done in th Geodetic Branch Workshops; the gun metal knife-heads were made ty the Mathematical Instrument Office, Calcutta, the knives were aggte in the case of No. 1 pendulum and stainless steel for Nos. 2 and 3 penduma Unfortunately hard stainless steel was not available at that timei Calcutta, and changes occurred in the times of vibration of Nos, 2ad 3 pendulums during the field season as a result of the blunting of th knife-edges.

The pendulums were not annealed and changes occurred whid were probably due to the adjustment of strains set up in the castion The pendulums were laequered.

The design of the pendulums followed generally that of tot old von Sterneck pendulums, the chief modifications being :-
(i) The stem projected about an inch above the knife-hered This obviated all handling of the knife-head ittele when putting the pendulums in position for obse vation.
(ii) The stem was thicker, as it showed a tendency to whipa the lathe.
(iii) The knife-head fitted on a squared portion of the stat with the upper part pressing against a flange on th stem and was clamped in this position by means of setscrew.
A new dunimy pendulum for the thermometer and a new driny pendulum for the flexure observations were also made in the Geoder Branch Workshops.

Observations were made at Dehra Dūn in a cold room and iol specially heated room and also at Evelyn Hall, Mussoorie, so as ${ }^{\text {h }}$ obtain a low air density, there being no suitable vacuum appardo available.

The rauges of temperatures and densities so obtained were:-
Temperature from $10^{\circ} .20 \mathrm{C}$ to $25^{\circ} .44 \mathrm{C}$
Density from 0.737 to 0.885
As the density was not constant at Dehra Dūn, results mere 1 pressed in the form-

$$
S_{n}+K T+K^{\prime} D=s
$$

and values for $s_{n}, K$, and $K^{\prime \prime}$ obtained by the method of least splare

The results of the pendulums compared:-

Peılulum No.	Reduced times of vibration $=s_{0}$	$\begin{array}{\|c} \text { Tempera- } \\ \text { ture factor } \\ =k \\ \text { (anit is } \\ \left.10^{-7} \mathrm{sec} .\right) \end{array}$	$\begin{gathered} \text { Density } \\ \text { factor }=k^{1} \\ \text { (unit is } \\ 10^{-7} \mathrm{sec} \text {.) } \end{gathered}$
No. 1	$0.5070460$	46	667
, 2	$0 \cdot 5075733$	50	$6: 38$
, 3	0.5060075	47	576
No. 137	0.5072594	49	594
, 138	$0 \cdot 5075016$	49	572
, 199	0.5071620	49	606
, 140	0.5070864	4.9	606

As observations in Kashmīr would have to be carried out in a tent, temperature conditions were likely to be bad; investigations made during the recess of $192 t$ showed that results would still be satisfactory if the temperatures were obtained from a thermometer placed in a suitsbly designed dummy pendulum. No such dummy pendulum had been used for the tent cbservations in 190t-05, which were considered unsatisfactory.

However in order to reduce temperature changes as much as possible the old routine of observing four pendulums each day was abandoned. One pendulum only was observed each day so that the pendulum case could remain closed.

A lengthy comparison of the pendulum clock (Strasser and Rohde No. 238) with the newly installed Riefler clock showed that the former had a regular change of rate. This being so, the old system of observing twice in 2ll hours with the lst observation shortly after the evening star observations was not satisfactory. Three obscrvations in the 24 hours were adopted, the middle observation being just 12 hours after the star observations, the other two equally before and after the middle one, (in practice shortly before and after the evening star observations).

In order not to depend entirely on one timepiece, the pendulum clock, (S \& R 238) and the box chronometer (Victor Köhlberg $\mathrm{N}_{0}$. 6688) were used. The method was as follows :-
lst series of coincidences with $S \& R$ R 238 , then immediately

then | 1st | 2nd | ,$"$ | ,$"$ |
| :--- | :--- | :--- | :--- |
| 2nd ", | ,$"$ | $"$, |  | with No. 6688

with S \& R 238 and
,, No. 6688

Effect of temperature conditions in Kashmir observations.
131. allowing as usual an interval of 60 coincidences between the lst and 2nd series of each clock.

The two results are equally affected by temperature, density and flexure errors, so if they differ it is solely the result of irregular fuctuations in clock rate : this method therefore is an excellent check on the behaviour of the clocks.

As the pendulums were new it was anticipated that they migh change; so after observations had been made at the first five stations the pendulums were reswung at Dehra Dün; and in Kashmir a subbay was established at Gandarbal, the work being divided into two other circuits beginning and ending at the sub base.

The programme for the season 1924-25 commenced with the stations in the plains of the Punjab followed by a line of station: running from Rāwalpindi northwards into the Himalayas as far as the Deosai Plains; in addition a number of stations were occupied is the valley of Kashmir itself.

The party consisting of two officers, two computers and tweats men left Dehra Dūn early in March 1925. All went well with the eef apparatus and Captain Glennie returned to Dehra Dūn after complefing the first five stations and reswung the pendulums to check any change

From this time Lieut. Osmaston replaced Mr. Mathur in the part! as the latter was required for observatory work at Dehra Dunn.

The party had the misfortune to resume work at Bāramüla just al the time when the cholera epidemic which afterwards spread allorn Kashmir, broke out there. A tinital died at Bāramūla and observationi were abandoned, the party moving at once to Shādipur at the junctioi of the Sind and Jhelum rivers. One khalasi died of cholera at Shadipur: the contacts were then isolated for 14 days on a small island in the Sind river below Gandarbal. The whole personnel of the party wer inoculated by Captain and Mrs. Glennie, as no medical aid was araiable nearer than Srinagar, where the doctors were fully occupied.

The heallyuarters camp was established at Gandarbal, and remainel there for the rest of the season; only the eight fittest kihalasis beiny taken for the hill work. The transport was engaged locally and consisted of about forty ponies and ten coolies.

No further cases of cholera developed, and the party proceeded ur the Sind valley; unfortunately the Daffatar died of hicart disease on the way; otherwise, from this time forwarl the health of the part! remained good.

Having completed observations at 2 stations in the Sind valler:
134. at the beginning of June the party struck north, rian the Satsaran Sir Journey to the Deosai.

Gali and Mashid Gali passes, both snow covered, thence acress the Kishenganga at Balogam joining the main route to (Gilgit a fer mile: north of Gurais. No serious difficulties were experienced on the mat as the weather was fine, and there was decp hard snow on the passe:

The Gilgit road was followed as far as Burzil chowki, and the Skardu ronte, which branches to the right over the Sarsangi and San Sangri passes on to the Deosai Plains. Considerable difficulty was encountered between Burzil and the Deosai ; the passes were not open and the weather was unsettled with clouds at night; thus in spite of marching before daybreak the ponies constantly fell through the soft snow, and progress was extremely slow and laborious; 12 miles being covered in three days.

During three weeks on the Deosai, observations were taken at three stations at an average height of 13,000 feet. At first the weather was cold and windy with a minimum temperature of $27^{\circ} \mathrm{F}$., but later the weather conditions improved and it was fine and warm during the day.

The two views of the Deosai show the type of the country to some extent; consisting of round-topped, low, rolling hills with flat luxuriant moorland between, traversed by many streams and covered with innumerable small lakes and pools. The numerous streams combine to fow out at the south east corner of the Deosai which is otherwise a complete basin, 20 miles across, surrounded by a wall of mountains whose steep and rugged outline is in marked contrast to the gentle slopes of the plain.

No supplies of food could be obtained locally, although large flocks of sheep and goats are brought up later for the excellent grazing.

Having completed the work in this region the party returned to Giandarbal by the Gilgit road; while passing Minmarg, a small village of some 20 dilapidated $\log$ huts, it was noticed that the cairn erected to mark the latitude station on the way up, had disappeared; on inquiry thestation proved to be in the middle of the local polo ground and it was agreed that the mark stone should remain at ground level, with no cailn over it.

Pendulums were reswung at Gandarbal, and three other slations were occupied in the valley of Kashmir and three at varying altitudes in the Pir Panjal range to the south. During this period clouds and min interfered with the star observations; fortunately the Astrolabe programme, necessary for determining the time, was very short, othermise pendulum work would have been almost impossible.

The whole programme was successfully completed early in September and the party proceeded back to recess headquarters in Dehra Dūn.
137.

Cirouite.
138.

Floxure corrections 1924-25.

A sub base and circuits

Circuit I		Circuit II   (Sind \& Burzil Valleys and Deosai Plains)		Circait 111   (Kashmir Valley \& Pir Yanjal)
Dehra Dūn (1)   Wazīräbād	...	Gandarbal (1) ...		Gandarbal (2)
	-	Hayan	...	Lalpur
Jhelam	...	Sonāmarg	...	Srinagar
Rãwalpindi	...	Churaman	-•	Pingalan
Domel   Dehra Dūn (2)	...	Minmarg	...	Yūs Maidau
	...	Deosai I	...	Korag
		, 11	...	Tosh Maidan
		" JII	...	Gandarbal (3)
		Gandarbal (2)	...	Dehra Dūn (3)

In addition, observations at Shādipur in the Kashmir Valley max between Circuits I and II are grouped with Circuit II in Table VII.

TABLE VII.—Flexure corrections, season 1924-25

Circnit I	$\begin{gathered} \text { unit is } \\ 10^{-7} \mathrm{sec} . \end{gathered}$	Circnit II	$\left\lvert\, \begin{gathered} \text { unit is } \\ 10^{-7} \mathrm{sec} \end{gathered}\right.$	Circnit III	
Dehra Dūn (1) (a)	- 98	Shädipur (b)	-116	Gandarbal (2) (c)	- 4
Whzìribñd (a)	-135	Gnndarbal (1) (b)	-117	Lālpur (b)	-18
Jhelum (a)	-100	Hayan (b)	-164	Srīnagar (a)	- ${ }^{1 / 4}$
Háwalpindi (a)	- 89	Sonāmarg (b)	-239	Pingalan (b)	- ${ }^{(0)}$
Domel (a)	-103	Charawan (b)	-101	Yús Maidan (b)	-16
Dehra Dūn(2) (a)	- 60	Minmarg (b)	-193	Korag (d	-
		Deosai I (d)	- 62	Tosh Maidan (b)	-114
		$\cdots \quad \mathrm{II}$ (d)	- 62	Gaudarbal (3) (c)	- 3
		., 1II (d)	- 38	Debra Dū口 (3) (a)	-8

In the above table (a), (b), (c) and ( $l$ ) denote the various meth: of setting up the iron pendulum stand.
(a) Iron pendulum stand set up on a concrete floor mi plaster of Paris.
(b) A pit 5 inches deep made in the ground, three sto wooden pegs about 15 inches long dliven in with the tops flush with the bottom of this pit and the in pendulum stand set up on these with plaster of Paris.
(c) Stand set up on a large millstone embedded in the ground.
138.
(Contd $)$
Method (b) appears to be the best way of setting up the stand on earth without large stones.

At Pingalan the ground though apparently firm, was found to be continually vibrating, possibly owing to pulsations in an underground water channel. There was a strong spring about 100 yards a way.

The pendulums were swung in rooms at Dehra Dūn, Wazīrābãd, Jhelum, Rāwalpindi and Murree. At Domel pendulums were swung in a verandah screened off by kanats; at all the other Kashmir stations pendulums were swung in the pendulum tent. This double fly tent was 14 ft . by 1 ll ft . and is known as the " 1905 pattern light mess tent" made by the Elgin Mills. It is exceptionally convenient, very light and portable and can, if required, be converted into two separate tents. The chronograph was set up at one end of the pendulum tent.

Temperatures experienced ranged from a minimum of $5^{\circ} \cdot 83 \mathrm{C}$ at Deosai I to a maximum of $32^{\circ} \cdot 20 \mathrm{C}$ at Gandarbal (2). The average rate of change of temperature in the tent was:-

Night observations	$-0^{\circ} .61 \mathrm{C}$	per hour
Morning	$"$	+1.39 C
Evening	$"$	+0.09 C

Heights in Circuit I were obtained by levelling, in Circuits II and III by theodolite observations to triangulated points. The heights of the stations are given in Table XII at page 191.

The clock rates for Circuit I were obtained by observations with the bent transit instrument as in the previous season by Mr. R. B. Mathur b. a., and for Circuits II and III by observations with the geodetic model prismatic astrolabe by Captain E. A. Glennie and Lient, G. H. Osmaston at alternate stations.

The average probable errors were:-

Sustruments	Single   observation	Mean   observation
Bent transit instrument	$\pm 0^{s} \cdot 022$	$\pm 0^{\circ} \cdot 007$
Astrolabe	$\pm 0 \cdot 023$	$\pm 0 \cdot 012$

For the transit instrument a portable iron stand, designed by Dr. de Graaff Iturter was used, and proved a great convenience and steadier than a hurriedly made pillar.

As alrealy stated by using two clocks an indication of their relative steadiness can he oltained from an examination of the pendulum results; since the differences of times of vibration obtained for a given pendulime from the 1 wo clocks is altogether unaffected by temperature and lesure errors. Table VIII shows the difference of the times of vibration
139.

Observations
in tents.
140.

Heights of stations.

## 141.

Clock rates by transit and astrolabe
141. obtained with chronometer 6688 from the mean of the times obtaind (Contd.) from both clocks. The daily change of rate of each clock is also shont. Table VIII shows plainly the effect on the clocks due to the adrees temperature conditions in a tent. At the first four stations in the table, observations were made in rooms with good temperature control the agreement $\left(S_{1}-S_{m}\right)$ between clocks is plainly much better thand the rest of the stations. Clock S \& R 238 failed altogether at Churama, it was overhauled at Minmarg and new springs put in. The effectol the new springs is shown by the greatly increased changes of rate of Minmarg and Deosai I ; after which the springs appear to have setiled down to their work. In spite of the excessive change of rate at Minmar the value $\left(S_{1}-S_{m}\right)$ is no bigger than at other stations showing that the method of observing three times in the 24 hours is quite satisfactorn. The mean daily change of rate of the box chronometer 6688 is $0 \cdot \mathrm{i}$; and of the pendulum clock S \& R 238 (after excluding the bad chang: at Minmarg and Deosai I) is $0^{5} \cdot 70$. The box chronometer beside being better in performance is very much more portable and convenien: in every way. Its weight in a special travelling box is 40 lbs and that of the pendulum clock and stand is 210 lbs .

TABLE VIII.-Difference of the individual times of vibration firn mean and diurnal change of clock rute, season 1924-20


* The aiference bas heen obtained from a comprasish of the times of sithe: tion of individnal nendalum as ohtained from dimmometer No, fis with the wiean as obtained from both clocks.
 of an observation

TABLE VIII.-(Contd.)


* Now springe put in at Minmarg.
$\dagger$ 'theso values are omittod from menn.

TABLE VIII.-(Conld.)

Name of station	Pendnlom	$\left(S_{1}-S_{m}\right) \times 10-7$	Daily changes of rate	
			6688	S\&R 238
Tosh Maidan	1 2 3	-29 +14 0	$\cdots$ $+\cdots .90$ -0.90	$\ldots$ +2.43 $\cdots$
Gandarbal (3)	1 2 3	-26 +19 $-\quad 5$	$\begin{aligned} & \cdots \\ + & 0.44 \\ & 1.00\end{aligned}$	$7 \%$ +1.66 -0.61
Mean ${ }^{*}$		9	$0 \cdot 45$	0.70

142. 

Variation from mean $\&$ Dehra Dun values of Indiuidual Pendulums.

The method of observing only one pendulum each day has lif effect that the result obtained for each pendulum contains differem clock rate, temperature and flexure errors ete. so that the differenced individual pendulums from the mean or from the Dehra Dün valued the pendulums will vary more than was the case before, whenal pendulums were observed each day. Table IX shows the differencesd individual pendulums from the mean pendulum, and the differenes for the first Dehra Dūn value of each pendulum from the various stationi: A line indicates where a change in the pendulum has occurred betwee two stations. The following deductions regarding the pendulums sari been made from consideration of table IX at page 184.

No. 1 Pendulum-Circuit I. A change of $-28^{3} \times 10^{-7}$ ocenrerd between Jhelum and Rāwalpindi. No changes occurred in Cireuits ll and III. There has been no noticeable deterioration of the knife-del which is made of agate. The change in Circuit I was probably dueti adjustment of strains set up in casting.

No. 2 Pendulum-Circuit I. A change of $\sim 116^{6} \times 10^{-7}$ ocanrel between Jhelum and Rāwalpindi: At Domel No. 2 Pendulum appeard to be changing during the observation; possibly any tendency to change was increased by the move from Murree which was under snow to Domel where it was very hot. The value obtained at Dehra Din in March 1925 shows a change of $-214^{8} \times 10^{-7}$ after Murree. Cireuits II and III.-Since No. 1 Pendulum remained unclanged in Kashmirit can be used as a means of standardising the other two pendulums: Gandarbal is the sub base, the three values for No. 1 Pendulum al Gandarbal show a mean difference from Dehra Dūn of $-43^{8} \times 10^{-7}$. Heng No. 2 Pendulum is assumed to have changed by $+1: 100^{8} \times 10^{-7}$ for tive stations Gandarbal (2), Lālpur, Srīnagar, Pingalan and to have remaned unchanged for the other stations. A further clange occurred between Gandarbal (3) and Dehra Dūn. The knife-edge has deteriorated, as i: evidenced by the more rapid waning of the amplitude. It is of sot stainless steel.

[^17]No. 3 Pendulum-Circuit I. A change of $-109^{8} \times 10^{-7}$ occurred between Jhelum and Rawalpindi. Circuits II and III-There was a (Conto.) change of $-125^{5} \times 10^{-7}$ for the stations Sonamarg, Churawan, Minmarg, Deosai I, and Deosai II, otherwise no change in Kashmir. A further change occurred between Gandarbal (3) and Dehra Dunn. The knife-edge has deteriorated; it is of soft stainless steel.

TABLE IX.-Differences from mean and Dehra Dinn values, season 1924-20. (The unit is $10^{-7} \mathrm{sec}$.)


The Dehra Dūn value ( $s_{0}$ ) of the pendulums from the above deductions for the various stations are tabulated below :-

Falue $\left(s_{0}\right)$ of the pendulums at different stations

Pendulums	Stations	Value of ( $s_{0}$ )
No. 1 Pendulum	Wazīrăbād \& Jhelum   Rāwalpindi, Murree and Domel   All the other stations in Circuits II and III ...	$\begin{aligned} & 0^{s} .5070460 \\ & 0.5070433 \\ & 0.5070425 \end{aligned}$
No. 2 Pendulum	Wazīräbäd \& Jhelum   Rāwalpindi, Murree and Domel   Gandarbal (2) Lālpar, Srinagar \& Pingalan All the other stations in Circuits II and III ...	0.5075733   0.5075617   $0 \cdot 5076533$   0.5075403
No. 3 Pendulum	Wazīrābād \& Jhelum Rāwalpindi, Murree and Domel   Sonāmarg, Churawan, Minmarg, Deosai I, Deosai II All the other stations in Circuits II and III ...	$\begin{aligned} & 0.5070075 \\ & 0.5069966 \\ & 0.5069749 \\ & 0.5069874 \end{aligned}$

The differences from the mean pendulum are retabulated in Table $\mathbf{X}$ mith the adjusted Dehra Dūn values. The times of vibration and deduced values of $g$ are given in Table XI. An abstract of the results
144.

Values of $g$ in 1914 \& 1925 compared. is given in Table XII. Owing to the unsatisfactory behaviour of the tro pendulums with stainless steel knife-edges, the values of $g$ and the corresponding anomalies should be taken as correct to 0.01 dynes only. A determination of the value of gravity at Srinagar was made by De Filippi Expedition in 1914 with eight pendulums. The results are compared below :-

$$
\begin{array}{ll}
\text { De Filippi Expedition in } 1914 & g=979 \text { dynes } \\
\text { Survey of India in } 1925 & g=979.090
\end{array}
$$

143. Value ( $s_{0}$ ) of the pendulums at different stations.

TABLE X.-Differences from the mean and individual pendulums, season 1924-25. (The unit is $10^{-7}$ see.)

Name of station	Differences from the moan					
	No. 1	$v$	No. 2	$v$	No. 3	-
Dehra Dūn (1) ...	- 1629	- 18	+ 364t	+ 06	- 2014	+ 13
Wazirībūd	- 1610	+ 01	+ 3642	+ 04	- 2033	- 10
Jhelnm	- 1595	$+16$	+ 3629	- 09	- 2034	- 07
Mean	- 1611		+ 3638		- 2027	
Dehra Dūn (adjusted)	- 1573	- 01	+ 3612	+ 11	- 2039	- 7.6
Rãwalpindi	- 1568	+ 04	+ 3595	- 06	- 2026	+ 03
Murree	- 1574	- 02	+ 3596	- 05	- 2021	+05
Domel					...	
Mean	$-1572$		$+3601$		- 2029	
Debra Dün (2)	- 1501		$+3470$		- 1967	
Dehra Dūn (adjosted) ...	- 1476	- 05	+ 3502	00	- 2027	$+03$
Sbādipur	- 1511	- 40	+ 3532	$+30$	- 2020	$+10$
Gandarbal (1)	- 1488	- 17	+ 3491	- 11	- 2004	+ ? 6
Hayan ...	- 14.52	+ 19	+ 3486	- 16	- 2033	- 0
Deosai III	$-1476$	- 05	+ 3503	$+01$	- 2026	$+\mathrm{H}$
Yuis Maidan	- 1482	- 11	+3501	- 01	- 2018	+1:
Korag	- 1480	- 09	+ 3530	+ 28	- 2049	-1
Tosh Maidan	- 1430	+ 41	+ 3472	- 30	- 2042	- 1 !
Gandarbal (3)	- 1445	+ 20	+ 3497	-05	- 2052	- ?
Mean	- 1471		+ 3502		- 2030	
Dehra Dūn (adjnsted)	- 1434	+ 03	+ 3544	+ 04	- 2110	- 0
Sonйmarg	- 1448	- 11	+ 35.47	$+07$	- 2099	${ }_{( }$
Cburawan	- 1441	- 04	+ 3511	- 29	- 2069	+ 3
Minmarg	- $1+40$	- 03	+ 3500	$+10$	- 2111	-03
Deosai I						
Deosai II	- 1421	+ 16	+3550	+ 10	- 2128	- 2
Mean	- 1437		$+3540$		- 2103	
Dehra Dün (adjusted)	- 1519	- 0.5	+ 3589	+ 02	- 2070	+ ${ }^{13}$
Gandarbal (3)	- 1533	- 19	+3597 $+\quad 3$	+ 10	- 2064	+
Līlpur	- 1452	+62	+ 3545	- 42	- 2093	-20
Srinagar	- $150 \pm$	+ 10	+ 3579	- 03	- 2075	-
Pingalan	- 1561	- 47	+ 3627	+ 40	- 2085	$+$
Mean	- 1514		+ 3587		- 2073	...
Dehra Dīn (3)	$-1435$	$\ldots$	$+3464$		- 2029	-

TABLE XI.—Mean times of vibration and deduced values of $g$, season 1924-25


TABLE XI.-Mean times of vibration and deduced values of $g$, season 1924-25-(Concld.)


The observations for time with the prismatic astrolabe made to obtain the clock rates (vide §l46), also determined the astronomical latitude. In this way astronomical latitudes were obtained without extra labour at all the stations in Circuits II and III. Observations for latitude were made at Bāramūla also. Usually at each station there were four nights of observations, averaging two hours each night; longer programmes would have interfered with the pendulum work. The average probable errors in the astronomical latitude were:-

$$
\begin{array}{ll}
\text { p.e. of a single determination } & \pm 0^{\prime \prime} \cdot 55 \\
\text { p.e. of the mean } & \pm 0^{\prime \prime} \cdot 13
\end{array}
$$

This is not as good as the Talcott results in previous seasons but the astrolabe programme was much shorter.

Evidently with this instrument a short series of observations on a single night are unreliable; but under favourable conditions the method gives results comparable in accuracy with those obtained by the Talcott method.

The great advantages of the prismatic astrolabe are :-
(i). Simultaneous determination of time and latitude.
(ii). Great portability of the instrument and easy erection.
(iii). Simplicity of observation.

A disadvantage is that results are noticeably affected by differential refraction effects when there is a marked change in the weather. Probably such effects are much greater in the Himalayan regions than in the plains: they lead to a persistent error, so long as the unequal conditions prevail. Persistent errors of this nature were found at the following stations, always when the weather was changing, one part of the sky being clear and the other part misty and unsettled. The observations on these unsettled days were rejected.

Name of station	Error
Minmarg	$-3^{\prime \prime} \cdot 03$
Deosai I	$+4^{\prime \prime} \cdot 06$
Deosai III	$+4^{\prime \prime} \cdot 89$
Yūs Maidan	$-3^{\prime \prime} \cdot 52$

For the calculation of star places use has been made throughout of the American Ephemeris; the short period terms ha ve been included and also the corrections to star places given in Table XII I of the Ephemeris 1925.

Geodetic latitudes were obtained by theodolite resection at all stations; in most cases at least four well defined triangulated points were visible either from the pendulum camp itself, or from some point not more than a mile distant. The resected point was then comnected to the astrolabe station by direct measurement or, if this was not possible, by measuring a small triangle formed by the astrolabe, resected point, and any third point in camp.
145.

Simultaneous
latitudo
determina-
tion by astro-
labe.
146.

Advantages \& disadvantages of astrolabe

## 147.

Star cata. logue.

## 148.

Geodetic latitudes by theodolite resection.
148. Observations were made on three zeros using a 5 -inch micromter theodolite ; and an azimuth taken to Polaris before dark.

The coordinates of the resected point were found graphically ${ }^{\alpha}$ follows:-Using the azimuth found, and the approximate distances io the points measured from a map, a large scale diagram is drawn of the area in which the resected point lies, showing each of the observed mags; these will not meet in a point, due to error in the observed azimuth and errors in identifying the exact triangulated fixed points. The first ol these errors can be entirely eliminated by swinging each ray through a distance on the diagram proportional to its length, as in plane tabliog. The second error is then easy to detect as the ray from any wrong! identified point will disagree with the majority, and can be discardel.

Plate No. X shows a typical diagram; thelresection at Tosh Maidan
It is important to note at the time of observation, which triangulated points are really definite, in order that no mistake is made in discarting a correct ray. A badly defined point is seldom of any use whatsoever, ai the error of intersecting off the mark is reproduced in magnitude athr resected point, and if used, only complicates the result.

The resection was unsatisfactory at one station only, i.e. at Sonis marg. At this station only two points were visible, one badly definel: and the heights obtained from these did not agree. The geodetic lifi. tude of Sonāmarg is therefore given to the nearest second only in Table XIII.

The latitude stations were marked with a large stone at ground level, with a circle and dot cut on its upper surface, and a rough cain of stones 5 or 6 feet high built over it.

The astronomical results are given in Table XIII. These are of corrected for latitude variation.

SHOWING GRA


## DIAGRAM

## SHOWING GRAPHICAL SOLUTION OF RESECTION

AT TOSH MATDAN


The computed points are marked +
By inspection, and rejecting the ray to Pt. 180 the position for the resected point is near O .
The thick black lines are then drawn as a 1 st approximation, parallel to the first rays, and at distances from them proportional to the length of each ray concerned.

By further inspection, and throwing out the ray to Mahádeo, the exact position O is obtained through which the 4 red rays pass.

Coordinates of O are $\left\{\begin{array}{llll}\mathrm{\lambda} & 33^{\circ} & 56^{\prime} & 3^{\prime \prime \prime} \cdot 653 . \\ \mathrm{L} & 74^{\circ} & 30^{\prime} & 00^{\prime \prime} \cdot 749 .\end{array}\right.$

Name of statiod	Latitude N	Longitale E	Height	$\gamma_{0}$	Corrections		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	g	$g-\gamma_{\text {A }}$	$g-\gamma_{B}$
					$\begin{aligned} & \text { for } \\ & \text { height } \end{aligned}$	for mass (Bonguer)					
Wazirıäbād	$32^{\circ} 26^{\prime} 48$		756	979.517	-0.071	+0.025	979-446	979-471	979.394	-0.052	-0.07
Jhelum	$\begin{array}{lll}32 & 55 & 20\end{array}$	$\begin{array}{llll}73 & 42 & 41\end{array}$	764	979.556	-0.072	+0.026	979-484	979.510	979.396	-0.088	-0.114
Rāwalpindi	$\begin{array}{lll}33 & 36 & 41\end{array}$	$\begin{array}{llll}73 & 01 & 07\end{array}$	1754	979.613	-0.164	$+0.059$	979-449	979.508	979.34 ${ }_{6}$	$-0.10_{3}$	$-0.16_{2}$
Murree	$\begin{array}{llll}33 & 54 & 07\end{array}$	$\begin{array}{llll}73 & 23 & 15\end{array}$	6885	979.637	-0.645	$+0.217$	978.992	979.209	979.014 ${ }_{4}$	$+0.03{ }_{2}$	$-0.18$
Domel	$\begin{array}{lll}34 & 21 & 08\end{array}$	$\begin{array}{llll}73 & 28 & 07\end{array}$	2239	979.675	-0.210		979.465		979.29 ${ }_{\text {s }}$	$-0.16_{7}$	
Shādipar	$\begin{array}{llll}34 & 11 & 14\end{array}$	$\begin{array}{llll}74 & 41 & 00\end{array}$	5193	979.661	-0.487		979.174		$979.05_{8}$	$-0.11_{6}$	
Gandarbal	$\begin{array}{lll}34 & 12 & 48\end{array}$	$\begin{array}{llll}74 & 46 & 09\end{array}$	5200	979.663	-0.487		979.176		$979.088_{2}$	$-0.094$	
Hayan	$\begin{array}{lll}3 t & 13 & 54\end{array}$	$\begin{array}{llll}74 & 58 & 29\end{array}$	6084	979.665	-0.570		979.095		978.990	$-0.10^{5}$	
Sonāmarg	$\begin{array}{lll}3+ & 18 & 00\end{array}$	$\begin{array}{llll}75 & 16 & 15\end{array}$	9050	979.671	-0.848		978.823		978.810	$-0.01{ }_{3}$	
Churawan	$\begin{array}{lll}34 & 39 & 32\end{array}$	$74 \begin{array}{llll} & 54 & 01\end{array}$	8151	979.701	-0.764		$978 \cdot 937$		978.881	$-0.05_{6}$	
Minmarg	$\begin{array}{lll}34 & 47 & 30\end{array}$	$\begin{array}{llll}75 & 04 & 49\end{array}$	9351	979.712	-0.876		978.836		$978.80_{3}$	$-0.03_{3}$	
Deosai I	$\begin{array}{llll}34 & 57 & 21\end{array}$	$\begin{array}{llll}75 & 14 & 41\end{array}$	13311	979.726	$-1.247$		978.479		$978.62_{5}$	+0.1数	
Deosai II	$35 \quad 0204$	$\begin{array}{llll}75 & 23 & 47\end{array}$	12805	979.733	-1.120		978.533		$978.62_{7}$	$+0.09_{4}$	
Deosai III	34555	$\begin{array}{llll}75 & 25 & 38\end{array}$	12391	979.724	-1.161		978.563		978.674	$+0.11{ }_{1}$	
Làlpur	$\begin{array}{llll}34 & 05 & 37\end{array}$	$\begin{array}{llll}74 & 32 & 12\end{array}$	5633	979.653	-0.528		979.125		$979.08{ }_{0}$	$-0.04_{5}$	
Srīnagar	$\begin{array}{llll}34 & 04 & 36\end{array}$	$74 \begin{array}{llll}74 & 49 & 27\end{array}$	5198	$979 \cdot 652$	-0.487		979-165		$979.09{ }^{\text {b }}$	$-0.07_{0}$	
Pingalan	$\begin{array}{llll}33 & 54 & 23\end{array}$	$\begin{array}{llll}74 & 55 & 59\end{array}$	5227	979.638	-0.490		979.148		979.075	$-0.07_{3}$	
Yūs Maidan	$\begin{array}{llll}33 & 49 & 57\end{array}$	$\begin{array}{llll}74 & 39 & 57\end{array}$	7867	979.631	-0.737		978.894		$978.91{ }_{8}$	$+0.02_{4}$	
Korag	$\begin{array}{llll}33 & 48 & 32\end{array}$	74	10952	979.629	-1.026		978.603		978.75,	$+0.149$	
Tosh Maidan	$\begin{array}{llll}33 & 55 & 18\end{array}$	$\begin{array}{llll}74 & 29 & 58\end{array}$	10315	979.639	-0.966		978.673		$978 \cdot 80_{8}$	$+0.13_{5}$	

TABLE XIII.-Latitude observations with prismatic astrolabe in Kashmir, season 1925

Name of station	Observer	Geodetic Latitude	Longitude	Astronomic Latitude	Probable Errors of the mean	Plomb. line deliec. tions: A-G
Bàramùla	G. H .0.	$34^{\circ} 12^{\prime} 25^{\prime \prime}$	$74{ }^{\circ}$ 21 01 ${ }^{\prime \prime} 12$	$34^{\circ} 12{ }^{\prime} 23.195$	$\pm \stackrel{\prime \prime}{ } 10$	$-1^{\prime \prime}$
Shādipur	G.H.O.	$341112 \cdot 69$	$744100 \cdot 35$	$341056 \cdot 70$	$\pm \cdot 114$	-15.8!
Gandarbal	$\begin{aligned} & \text { G.H.O. } \\ & \& \\ & \text { E.A.G. } \end{aligned}$	341248.03	744608.57	$3412 \quad 29 \cdot 79$	$\pm \cdot 090$	-18.2
Hayan	E.A.G.	$\begin{array}{lll}34 & 13 & 54.49\end{array}$	$74 \quad 58 \quad 28 \cdot 94$	$3413 \quad 33 \cdot 68$	$\pm \cdot 226$	-20.8
Sonāmarg	G.H.O.	$\begin{array}{llll}34 & 18 & 03\end{array}$	$75 \quad 1619$	$341751 \cdot 15$	$\pm \cdot 140$	-12
Cburawan	L.A.G.	343931.69	$74 \quad 54 \quad 00.01$	$34 \quad 3915 \cdot 64$	$\pm \cdot 141$	-16.0.
Minmarg	G. H.O	$34.4730 \cdot 21$	$750434 \cdot 57$	$344722 \cdot 67$	$\pm \cdot 074$	-07.5
Deosai I	E.A.G.	34.57 20.76	$751441 \cdot 24$	$34 \quad 57$ 21.20	$\pm \cdot 188$	+019.4
Deosai II	G.H.O.	$350203 \cdot 82$	$75 \quad 23 \quad 46 \cdot 32$	350211.78	$\pm \cdot 160$	+07.9
Deosai 1II	E.A.G.	$34.55 \quad 47 \cdot 20$	$75 \quad 25 \quad 38 \cdot 30$	$34 \quad 5605 \cdot 42$	$\pm \cdot 123$	+18.8
Lālpur	E.A.G.	$34 \quad 0536 \cdot 93$	$74 \quad 3211.69$	$340540 \cdot 19$	$\pm \cdot 057$	+03. 4
Srinagar	G.H.O.	3404 36-61	$74 \quad 49$ 27-27	$340 \pm 19 \cdot 42$	$\pm \cdot 133$	$-17.1$
Pingalan	E.A.G.	$335422 \cdot 49$	$74 \quad 55 \quad 59 \cdot 16$	$335406 \cdot 3 \%$	$\pm \cdot 166$	$-16$.
Yis Maidan	G.H.O.	$334956 \cdot 55$	$743957 \cdot 26$	334959.08	$\pm \cdot 106$	+03.
Korag	E.A.G.	$\begin{array}{lll}33 & 48 & 31\end{array} \cdot 37$	7433 20.90	$334833 \cdot 36$	$\pm \cdot 181$	+01.
Tosh Maidan	G.H.O.	$335517 \cdot 33$	$74 \quad 29 \quad 58 \cdot 13$	335519.01	$\pm \cdot 180$	+ 01 -

[^18]


Kashmir. View from the summit of Tatakuti in the Pir Pantal, 15,600 FEET.

Plate XIII

The Deosal. Looking S.E. from No. 2 Camp.


Corrections for topography and isostatic compensation have not yet been computed, so it is not advisable at this stage to attempt to make any definite deductions from the results.

In Plate No. XI the mountain masses are shown diagrammatically and all the stations of the observations with the Free Air gravity ano. malies and plumb-line deflections; previous latitude work in Kashmīr is also shown.

The southerly deflections obtained at Deosai I and II confirm the striking southerly deflections obtained by the De Filippi Expedition at Skirdu and Wozul Hadur (Skardu $28^{\prime \prime} \cdot 3 \mathrm{~S}$, Wozul Hadur $25^{\prime \prime} \cdot 7 \mathrm{~S}$ ) and appear to indicate that the Ladakh range is not compensated sostatically, whereas the degree of compensation of the Kara-koram range is very considerable.

A start has been made on the "Average height map of India". about one third of India has been completed, the average of heights of all 30 -minute squares being determined. Besides being of consideratle general interest, this map will very greatly facilitate the computation of topographical and isostatic compensation effects, and enable them to be taken out or checked by ordinary computers.

Various new forms and tables have been prepared for the astrolabe conputations; and the extension of the Hayford reduction tables for heights above 12,000 feet has been put in hand.
149. Corrections fortopography and isostatic compensation.
150.

Average height map of India and forms.

## Chapter V

## LEVELLING

(No. $1 /$ Party)<br>By Major A. H. Gwyn, i a.

1922-23
151. The party office closed at Mussoorie on 23rd September 1922, and

Season 1922-23.
moved to Dehra Dūn. Six detachments took the field ; of which No. 1 comprised all the Sutlej tertiary levellers, and No. 6, after completing a high precision line by single levelling, was raised to a double detach. ment ; the remaining four were double detachments. The recess season opened at Mussoorie on 5 th April 1923, detachments arriving at various dates afterwards; No. l recessed in Dehra Dūn.

The field organation was as follows:-
(a) Sutlej Valley Group under Captain E. A. Glennie, d.s.o, R.E, comprising :

No. 1 detachment under Captain Glennie.
," 2 detachment under Mr. O. N. Pushong.
, 3 detachment under Mr. P. B. Roy.
(b) No. 4 detachment (Bombay and Madras) under Mr. K.s. Gopalachari and later under Babu Mohd. Ishak Khan.
(c) No. 5 detachment (Burma) under Mr. S.C. Mukerjee.
(d) No. 6 detachment (Sind and Punjab) under Mr. Abdul Majid.

The Sutlej Valley Group commenced a close network of leveling for the Sutlej Valley Irrigation Project.

No. 1 detachment executed 13,889 linear miles of tertiary levell. ing in the Multan and Montgomery districts, covering 2045 square miles : while Nos. ${ }_{2}$ and 3 detachments ran 609 and 661 miles of secondary (double) levelling, to control the tertiary work of the present and subsequent seasons.

No. 4 detachment, on the simultaneous double levelling system, ran $z_{2}$ miles of secondary levelling from Ahmadnagar to Dhond, $2+1$ miles from Gooty to Ongole, and 208 miles in the Ghatprabha irrigation area in Bombay, for the local government.

No. 5 detachment executed 610 miles of secondary (double) levell. ing, for the Public Works Department (Irrigation), Burma, in connection with the Irrawaddy embankment scheme, correlated with the tide galges in the Irrawaldy Delta.

No. 6 detachment expecuted 205 miles of high precision (single) levelling from Khanpur to Jacobabād, this being the reverse direc. tion, and completed the work on that portion of line 101 of the nef

not for India. It was then expanded into a double detachment which carried out 392 miles of secondary double levelling about Mīrpur Khās, for the Bombay Government, in connection with the Sukkur Barrage Project.

The total work done was:-
(a) 205 miles of primary levelling for the new net.
(b) 313 miles of secondary levelling, for breaking up a circuit and for checking the standard bench mark at Ahmadnagar.
(c) 2480 miles of secondary levelling for local governments.
(d) 13,889 miles of tertiary levelling for the Punjab Government.
The work done was satisfactory, except that of No. 4 detachment, whose records were brought into recess so incomplete that the computation was not finished at the end of the recess season. The results of the work done for the local government were however sent out.

No. 6 detachment was delayed by relevelments and by high winds in Sind, and had to close work in June, leaving 411 miles of its programme undone.

Otherwise, the party's programme was completed.
As predicted in the Records Volume 1921-22, it was not found possible to devote more thin one detachment this year to the net; details of the work are given under No. 6 detachment (vide § 180).

No. l detachment.-tertiary levelling.
Captain E. A. Glennie, d.s.o., r.e., was in charge ; four sections, each of about 10 levellers, under Mr. R. B. Mathur, Mr. A.A.S. Matlub thmad, Babu H. K. Kar and Babu Faizul Hasan.

This work, which was taken up at the request of the Punjab Government, was a new departure.

Only a short time remained for training and equipping the detachment for the field, when organization orders issued at the end of July 1922; the training of new levellers, all engaged on "purely temporary" agreements beran at Dehra Dūn in September 192\%, under Mr. R.B. Mathur and Mr K. K. Das. All four sections left Dehra Dūu during the latter half of October 1922.

The detachment hearlquarters office opened at Bahãwalpur on 6th Surember. The recess office opened at Dehra Dün on 5th April 192:3, under Mr. I. B. Mathur.

2045 square miles of tertiary levelling were executed in sheets 39) $N / 16,3!() / 6,9,10,11,13,14,413 / 4,5,11,12,15,16,4+1 / 2,2$, and $+4 \mathrm{~F} / 3,4$.

The outturn would have been greater if there had been a complete stock of levels at the start.
155.

The new leval net.

156
Details of fizld work
field work
sutlej Valley.

- 153
(Contd.)

154. 

Summary.
157. Suri Ve who the Surlej Valley Project is being marked out into 100 -acre rectangles br No. 23 (Punjab Rectangulation) Party, and of this area 10,080 aquare miles is being further subrectangulated by the Civil Department to $\mathbf{2 5}$-acre rectangles. The corners of rectangles are marked on the ground by numbered stone pillars.

The work of No. 1 detachment consisted in determining the ground level at each pillar and at fixed intermediate points. About 11 ground levels per square mile are required for the area subrectangulated to 25 -acre rectangles, and 38 ground levels per anuare mile for the pemaining area, or 904,090 ground levels in all.

Lines of bench marks on the tops of rectangulation pillars running levelling, and formed into a grid by double levellers' lines running east and west about 15 miles apart or less.

Single levellers work along east and west lines between the bench marks on the north and south lines; each single leveller's line repre. sents about 4 miles of actual levelling.

The grid of tertiary bench marks is connected at frequent intervals to interred bench marks on the secondary lines run by Nos. 2 and" detachments.

The proportion of tertiary double to single levelling is about $1: 11$.
Dumpy and light Zeiss pattern levels were taken into the field; but it was soon found that work with Dumpy levels would not be satirfactory, and by the end of December the whole detachment was equipped with light Zeiss pattern levels.

At the beginning the shortage of levels made it necessary to donble bank in some cases. This did not result in a good rate of outturn.

Only one staff per level was employed at first, but subsequently two of the four sections were equipped with two staves per level.

Instead of pegs, small iron level plates were used and gave escellent results.

The outturn is as follows:--

> Irea levelled over.
(i). Subrectangulated to 25 -acre rectangles 1200 square miles.
(ii). Rectangulated to 100 -acre only....... S4.) " "

Miles of levelling :-
(i). Double levelling .............................. 1234
(ii). Single $\quad$, .......................... 12655

Points:-
(i). Ground levels.............................126342
(ii). Bench marks on tops of pillars...... . . 8152

The probable error of a ground level of tertiary single levelling is $t 0.049 \mathrm{ft}$.

The rates worked from the actual figures of the work done in season 1922-28 are as follows :-

Cost rates of work in 1922-23

Field work	Recess work	'lotal	Hemarks
Rs.	Rs.	RS.	
5.9	$1 \cdot 1$	$7 \cdot 0$	Cost per mile of levelling
$0 \cdot 6$	$0 \cdot 1$	$0 \cdot 7$	.. .. gronad level
			Cost per square mile
47-5	$8 \cdot 8$	$56 \cdot 3$	. ., 25-acrearea-
$23 \cdot 8$	$4 \cdot 4$	$28 \cdot 2$	, 100-arre area-

The above rates do not include any percentage for supervision, instruments, or mapping costs.

The Chief Engineer (Construction) was provided with volumes of heights computed in recess. A form of chart was devised, on the lour-inch scale, showing (i) in blue, the rectangulation framework, and ucessory work; (ii) in black, spot levels, and (iii) in brown, one-foot contours and some external reference letters. The detachment prodnced level and contour guides, from which fair drawings were made for reproduction.

No. 2 double detachment.-secondary levelling.
Mr. O.N. Pushong was in charge, and Babu Mohd. Ibrahim worked as second leveller. The lines that were run to control tertiary work were :-
(a) Kasür to Lodhrān via Khudiān, Pākpattan and Ratta Tibba, along the dismantled railway.
(b) Ratta Tibba to Kaim Rais-ki-got, by road via Luddan, across the Sutlej near the proposed Islamweir, direct to Nüriot, and thence by road.
(c) Kutalpur to Ådam wáhan : south west direct to Khãn Bela, then east. This line goes through much serub and grass land, and a large tract of sand west of Ādamwāhan.
(d) Lodlurān to Bahāwalpur, hy road. The Sutlej was crossed hy the railway bridge near Adamwāhan.
(e) Bahñwalpur to Fázilka; south mia Rãiáwiln to Diñorrt, then east to Marot, Shähswār Toba, Dhāb Sarkāri, Kandhyawàla and Walar; north along and west of tho Bikauer
163.
boundary, to the Sädikiyah canal; along the canal to the railway near McLeodganj Road then to Täzilka. This line passes through the Bahaiwalpur desert.
(f) Kandhyawāla to Hāsilpur. The line lay along typical cholistian, flat desert with sandy ridges.
The detachment left Dehra Dün on 15̈th October 1992, and startel levelling at Kasūr on 22 nd October. Work closed at Fizzilka on 1th March 1923, when the detachment proceeded to Mussoorie.
The outturn including branch lines and cheek levelling was 6199
miles; instruments were set up at 5530 stations; the total rise aud fall was $562+$ feet. Bench marks connected were a primary, 210 secondary, and 30 tertiary. Details are given in Table I.

Differences betrreen Levellers ( $1 s t-2 n d$ )

165.

Probabie aceidelital error.

The probable accidental error per mile according to the formuld $\pm 0.674 \overline{5} \sqrt{\overline{\bar{S} \mathrm{~d}^{2}}}$, where ' d ' is the discrepancy between two levelles: in the values of two consecutive bench marks, and ' $M$ ' the length of the line in miles, is given below. The average for the wholeof Indis is $\pm 0.00 \pm 2 \mathrm{ft}$.

Probable accidental error
1.65.
(Conto.)

Line	Probable accidental erior	Remarks
(a) Kusiur to Lodhriin	feet +0.003	$\begin{aligned} & \text { Branch line } \\ & \text { to }(a) \end{aligned}$
(b) Ratar Tibba to Kaim Rais-	$\pm .0 .0036$	
ki-got		
(c) Kutabpur to Adamwāban	$\pm 0.00341$	
(d) Lodhrin to Bahãwalpur	$\pm 0.00522$	
(e) Bahñwalyur to Fizzilka	$\pm 0.00271$	
(f) Kanduy yavāla to Hāsilpur		$\begin{gathered} \text { Brunch line } \\ \text { to (e) } \end{gathered}$

The embedded benchmarks laid down in all these lines are of the ure B design of the Survey of India, except that the letters "G.T.S." both on the stone block and on the referring pillar, are replaced by the letters "S.V.C." (Sutlej Valley Canals). They were put down by the Irrigation Engineers.

Zeiss level No. 3488 and Zeiss pattern level No. 16298 by Cooke, and Survey Committee Pattern staves Nos. 19A, 19B, 1 and 01 were used.

Except for a few cloudy days and a shower or two, the weather: remained clear and dry throughout. In the latter half of February and the first week of March high winds were experienced very frequently, and sand storms on two or three occasions.

The health of the detachment was good.
No. 3 double detachment.-secondary levelling. Mr. P. B. Roy in charge; Babu Indra Singh Rawat second leveller. The following lines were run, to control tertiary work:-
(a) Khudiān to Lodhrān, via Chūniãn, Dīpàlpur, Pakhi Miān and Kutabpur, by road and railway, and across country.
(b) Dīngarh to Khānpur, via Derāwar Fort and Mithra, across the desert.
(c) Mithra to Khānpur, via Reti and Chacharan, across the desert.
(d) Chacharan to Khān Bela, across country.
(e) Fäzilka to Ferozepore; this was a revision of part of main line 57 .

The dntachment left. Delura Dūn on 15th October 1922, and closerd work at Ferozepore on 29th March 192.3, proceeding to Mussoorie.

The outturn, including branch lines and check levelling was 661 miles; instruments were set up at 5816 stations. Bench marks conrested were 6 primary, 249 secondary and 27 tertiary. Details are ;iven in Table I.
169.

The country levelled.

The country was flat throughout, except from Dingarh io Khānpur, and from Mithra to Reti on the line Mithra to Khànpur, which were through the desert and full of sand hills.

The rivers Chenāb and the Sutlej were crossed at their junction near Bakhri village, by direct levelling, the greatest breadth being $13 \cdot 30$ chains of 66 feet.

Differences between levellers $(1 s t-2 n d)$


170 error.

The probable accidental error of the mean results per mile of double levelling according to the formula $\pm 0.6745 \sqrt{\frac{\sum d^{2}}{4 M}}$, where' $d^{\prime}$ is the discrepancy between two levellers in the values of two consecutire bench marks, and ' $M$ ' the length of the line in miles, is given below:-

Line		fient
(a) Khudian to Lodhrin	$\ldots$	$\pm{ }^{(1) .0038}$
(b) Dingarh to Khāupur	...	$\pm{ }^{10.0025}$
(c) Mithra to Khänpar	$\ldots$	$\pm^{17.0028}$
(d) Chacharan to Khān Bela	...	$\pm 10.0028$
(e) Fäzilka to Ferozepore	$\ldots$	$\pm 0.0024$

The usual types of type $\Delta$ (zine pipe), type в inscribed, tree izine plate), and rectangulation pillar bench marks were connected. The type $\mathbf{B}$ interred bench mark is of the usual type, except for the inseriptions.

The levels used were Zeiss levels No. 3342 and 16313. The staves wed were Nos. 11, $\mathrm{D}^{\prime}, 22 \mathrm{~A}$ and 23 A ; standard steel tape No. 7.

The health of the detachment was exceptionally good.
No. 4 double detachment.-secondary levelling.-Mr. K. S. Gopalachari, b.A. was in charge ; Babu Mohd. Ishak Khan was second leveller, and was in charge later on, with a "purely temporary" recorder as second leveller. The lines levelled were ( $a$ ) from Ahmadnagar to Dlond, to break up a circuit of the old level net of India and especially wocheck the height of the standard bench mark at Ahmadnagar; the 12 miles of the line contain 4 primary and 78 secondary bench marks; (b) irigation levelling in the Ghătprabla area in Dhärwār; from Gotūr to Kaladgi, from Mudhol to Jodhatti, and from Hukeri Road railway station to Mudhol, a total of 208 miles, connecting 1 primary and 176 seeondary bench marks; and (c) from Gooty to Ongole, to break up a ericuit of the old level net, with a branch line from Nandyãl to Atmakior; 241 miles of levelling, connecting 2 primary and 192 secondary bench marks.

The detachment left Dehra Dūn on 19th October 1922. It closed at Ongole on 26th May, and returned to recess in Mussoorie.

During May it was found necessary to recall the officer in charge, and let the second leveller take over the detachment.

During recess the computations of ( $b$ ) were carried through but those of (a) and (c) had to stand over. Work on (b) was very slow, oring to the careless manner in which the sheets were treated in the field. Binocular levels Nos. 6728 and 7952 , staves Nos. $\mathbf{E}_{1}, \mathrm{E}_{2}, \mathrm{~B}_{1}$ and $\mathrm{C}_{1}$, and standard steel tape No. 8 were used by the detachment.

The p. e. per (mile) ${ }^{\frac{1}{2}}$ for the simultaneous double levelling lines from Ahmadnagar to Dhond and from Gooty to Ongole is respectively $\pm 0 \cdot 10485$ and $\pm 0.00421 \mathrm{ft}$.

It was found unadvisable to accept the results of the 1921-22 levelling from Manmad to Ahmadnagar, owing to the deficient check levelling near Manmad; consequently the adjustment of the height of the standard bench mark at Ahmadnagar could not be carried out. It is hoped to rectify this in $1926-27$, so as to allow the publication of the line, and also the revision of published heights, on the lines Poona to Ahmadnagar and Ahmadnagar to Dhond.

The heights on the Ghätprabha lines of 1922-23 will not be published, as the levelling was of a secondary standard. They were duly sent to the Rxecutive Engineers.

The heights of the bench marks on the Gooty-Ongole line have been sent for publication.

## 173

Racess work and insirumeats used.

174
Manmad to
Ahmadnagar levelling of 1921.22 and of subsequent seasors.
174. Weather conditions became trying in April and May, especially in (Contd.)
175. Levelling in Burma.
176.

Outturn and the country levelled.
vaterless tract on the Eastern Ghāts, in sheets 57 I and M.
The health of the detachment was good.
No. 5 double detachment-secondary levelling, Mr. S.C. Mukerjet
(a) from Nyaungzaye to Yandoon, with branch line to Maletto;
(b) ", Yandoon to Kandin ;
(c) ", Ma-ubin to Bassein ;
(d) ," Sagamya to Pantanaw.

All the work was for the Public Works Department (Irrigation)(a) and (b) in connection with a scheme for double embanking the Irrawadday River, and (c) and (d) in order to correlate tide gauges in the Irrawaddy delta.

The detachment left Dehra Dūn on 14th October 1922; work started at Nyaungzaye on 15 th November, and closed at Pantanaw on 8th May 1923, recessing in Mussoorie.
The total outturn including branch lines and check levelling was 610 miles ; instruments were set up at 4666 stations; the bench marks connected were 3 primary and 301 secondary. Details are given in Table I.

The country through which the lines of levelling were carried ras mostly flat, full of tidal creeks and swampy grass jungles, and wide rivers had to be crossed during work.

Differences between levellers (1st-2nd)

	Line	mile	feet	mile	feet
(a)	Nganngzaye to Yandoon	$\begin{aligned} & \text { at 21st mile } \\ & \text { " 40th " } \\ & \text { 65th ", } \\ & \text { " 81st ". } \end{aligned}$	$\begin{aligned} & +0.005 \\ & -0.008 \\ & +0.051 \\ & +0.091 \end{aligned}$	$\left(\begin{array}{l} \text { at } 100 \mathrm{th} \text { mile } \\ \times 120 \mathrm{th} \text { " } \\ \text { (curl of line) } \\ \text { (calt } \end{array}\right.$	+0.15 +0.014 +0.04
	Yandoon to Kandin	$\begin{aligned} & \text { at 24th mile } \\ & \text { " 41st } \\ & =60 \mathrm{th} \quad " \\ & \because \text { 79th } \because \\ & \because 99 \mathrm{th} \end{aligned}$	- $11 \cdot 0 \mathrm{~m}: 8$   $-11.1122$   $-0 \cdot 142$   $-0 \cdot 01.4$   $-0.004$		-0.019 -0.019 +0.0108 -0.013
	Ma-nbin to Basscin	$\begin{aligned} & \text { at 20th mile } \\ & \text { "43rd } \\ & \text { "61st ", } \\ & \text {, 82nd ", } \end{aligned}$	$+0.016$   $+0 \cdot 035$   $-0.0108$   $+0.016$		
	Sagamja to Pantanaw	at 19 th mile   , 42nd "	$\begin{array}{r} +0 \cdot 034 \\ +0 \cdot 052 \end{array}$	at " - ind mile (eni of line)	+0.0188

The probable accidental error of the mean results per (mile) ${ }^{\frac{1}{2}}$ of double levelling according to the formula $\pm 0.6745 \sqrt{\frac{\overline{d^{2}}}{4 M}}$, where ' $d$ ' is the discrepancy between two levellers in the value of two consecutive bench marks, and ' $M$ ' the length of the line in miles, is given below :-

Probable accidental error

Live		feet
(a) Nyaungzaye to Yandoon	$\ldots$	$\pm 0.0031$
(b) Yandoon to Kandin	$\ldots$	$\pm 0.0027$
(c) Ma-ubin to Bassein	$\ldots$	$\pm 0.0018$
(d) Saganya to Pantanaw	$\ldots$	$\pm 0.002$

In addition to the usual type $B$ interred and ordinary inscribed bench marks, cement concrete pillars with or without iron plugs fixed in the centre were connected. The interred bench marks were mostly constructed only a few days before connection by levelling, and their heights therefore may undergo a change.

In addition to innumerable tidal creeks and small rivers, the following big rivers had to be crossed during the operations:-

Rivers	No. of times crossed	Lengtl of shot	Method of crossing
l'anhlaing ...	2	Varying from 8 to 13 chains	Direct levelling
Kok-kiowa	3	"	"
Buwle	2	"	,
Hlaing $\quad .$.	7	,	-
Kyיnt or Gonnyindan	1	,	.,
lrawards ...	1	"	"
Yuwe or Singamyn ...	3	,	"
Pantinaw	2	$\cdots$	-
	]	"	,.
Mymagusa	1	,"	.
Pammarali	1	"	.,
l'ebin ...	1	"	,
Pymualaw	1		
1	1	20 chains	Target
Bonyle	1	22 ,	..
Yazunaing	1	17 "	"
Kpanprathat   Kansintabin	1	32 20	"

The detachment used Binocular levels Nos. 6726 and 3, staves $N_{06}$. 23B, 22B and $13 \mathrm{~A}, 13 \mathrm{~B}$ and standard steel tape No. 2.

The health of the detachment was on the whole good, except for
178.

Bench marks connected and their heights.
179. initruments used and hea/til. one case of cholera and a few cases of dysentery.
180.

Levalling in Sind and Punjab.

No. 6 detachment. - Primary and secondary levelling. Mr. Abdul Majid in charge ; Babu B. B. Som, second leveller (for the secondar work only). The primary work consisted of single levelling in the back direction, on part of line No. 101 of the new level net of Iddis from Khänpur to Jacobäbād, (the forward direction was levelled in 1921-22). The secondary lines were:-
(a) Shāhpur to Mirrpur Purāna, via Khadro and the Jaimmo Canal.
(b) Landhi canal bungalow (39th mile, Jämrao) to Khipro.
(c) Khipro to Ghulām Bhhurgari, via Kāhi.
(d) Mīrpur Khās to Tando Ghulàm Ali, via Nabisar.
(e) Mìrpur Khās to Tando Ghulām Ali, via Digri.
$(f)$ Dīgri to Dàdāh.
The country generally is quite flat.
The detachment left Dehra Dūn on 21st October 1922, and returned to recess in Mussoorie on 26th June 1923.
181. The outturn of primary levelling was 195 miles of main line, excluld. ing 40 miles relevelment, 10 miles of branch lines, and check levelline

The secondary levelling comprised 392 miles, including band lines and check levelling. Bench marks connected were 9 primary and 441 secondary.

Details are given in Table I.
Differences between luvellers (1st-2nd)

Line	mile	feet	mile	feet
(a) Shāhpur to Mirpur Parāna	$\begin{aligned} & \text { at 20th mile } \\ & \text { ", 40th } " \end{aligned}$	$\begin{aligned} & -0.005 \\ & --0.040 \end{aligned}$	at 54th mile (end of line)	-0.0.06
(b) Lundhi Canal Bungalow to Khipro	$\begin{aligned} & \text { at } 16 \mathrm{th} \text { mile } \\ & , 32 \mathrm{nd} . \end{aligned}$	$\begin{array}{r} +0 \cdot 027 \\ +0.034 \end{array}$	at 47th mile end of line)	-0.0.05
(c) K hipro to Ghulām Bhburgari	nt 14th mile	-0.013	at 27 th mile (cud of line)	+0.046
(d) Mirpur Khēs to Tan do Ghulãm Ali cia Nabisar	$\begin{aligned} & \text { at 22nd mile } \\ & \text { " 40th " } \\ & \text { " 59th " } \\ & \text {. 79th ". } \\ & \text {. 98th ". } \end{aligned}$	$\begin{aligned} & -0 \cdot 028 \\ & -0.0107 \\ & +0 \cdot 0.07 \\ & +0.093 \\ & +0.052 \end{aligned}$	at 120th mile   " 148rd "   , 160th "   ,. 193rd ."   (end of line)	
(e) Mīpur Kbäs to Tando Ghalām Ali via Jïgri	at 22nd mile	+0.085	nt 43rd mile	$+0.093$
(f) Digri to Dādāh	at 6th mile	-0.005	at 15 th mile (end of line)	$+0.080$

The probable aceidental error of the mean results per (mile) ${ }^{\frac{1}{2}}$ of
 is the discrepancy between two levellers in the values of two consecutive bench marks, and ' $M$ ' the length of the line in miles, is given below:-

## Probable accidental error

Line		feet
(a) Shähpur to Mirpur Parāna	...	$\pm 0.0031$
(b) Landhi canal bungalow to Khipro	...	$\pm 0.0023$
(c) Khipro to Gholàm Bhhurgari	$\ldots$	$\pm 0.0028$
(d) Mīpur Kbās to Tando Gbalñm Ali via Nabisar	...	$\pm 0.0026$
(e) Mīrpar Khās to Tando Ghulām Ali dia Digri	...	$\pm 0.0029$
(f) Dīgri to Dādāh	...	$\pm 0.0015$

Binocular levels Nos. 6727 and 2698, staves Nos. 20 A, 20 B, 16 A and 16 B , and standard steel tape No. 3 were used.

The health of the detachment was on the whole good, except for a few cases of influenza and malaria. The heat in Sind in June mas trying.

The following passed through the press:-
New Edition of levelling pamphlet No. 63
No. 78

$"$	$"$	$"$	No. 78
$"$,	No. 79		

A correction slip to
Addendum to the levelling pampblet No. 47
The Preservation and Maintenance section for G.T.S. stations has been transferred to No. 15 Party's supervision.

The quection of the preservation of bench marks by local authorities has again received attention. The Survey of India is responsible for the expenses of repair, whereas most of the marks are of use to engineers only. It is thought that through handing over the upkeep of inscribed and embedded bench marks entirely to local governments and railways, who would pay the costs, more care would be exercised in preserving the marks.
183.

Instrumen:s used and health.
184.

Publications.
185.

Preservation and
Maintenance.
T'ABLE I.-Tabular statement of outturn of work, season 1922-23



TABLE I.- Tabular statement of outhurn of work, season 1922-23-(Contd.)

TABEE T.— Tabular stalement of outlurn of work, seusom 1.929-2.

$\dagger$ Secondary G.T. Station.

## TABLE II.-CHECK LEVELLING

Discrepancies between the old and new heights of bench marks


## TABLE II-—CHECK LEVELLING—(Contd.)

Discrepancies between the old and new heights of bench marks


TABLE H-CHECK LEVELLING—(Contd.)
Discrepancies between the old and new heights of bench marles


TABLE II.—CHECK LEVELLING—(Contd.)
Discrepancies between the old and new heights of bewch marks


TABLE II.-CHECK LEVELLING-( Coucld $)$.
Discrepancies between the old and new heights of bench marks

Bonch mark of the original levelling that were conuected for chect levelling				Observed height above ( + ) or below (-)starting bench mark as determined by			
No.	Degree sheat	Description		Original levelling		Check. $\underset{\text { levelling }}{\text { late.23 }}$ 1924.23	
At Kalādgi							
			miles	feet	date	yeet	feet
	47 P	GT.S. ('Yype C) on rock	$0 \cdot 0$	0.000	1910-11	$0 \cdot 000$	0.000
66	"	G.'I.S. $\text { O } \quad \text { " bridge } 42$	0.5	$+5 \cdot 522$	"	+5.523	+0.001
67	"	$\begin{gathered} \text { G.T.S. } \\ \text { O. } \\ \text { B.M. } \quad \text { culvert } 37 \end{gathered}$	$2 \cdot 1$	+ $35 \cdot 133$	"	+ $35 \cdot 101$	-0.033
68	"	$\begin{aligned} & \text { G.'.S.S. } \\ & \text { O } \\ & \text { B.M. } \end{aligned}$	3.2	+35.626	"	+ $35 \cdot 592$	-0.034
At Gooty							
19.5	57 E	$\underset{\substack{\text { B. M. } \\+ \\ \text { M... L.. } \\ 1165 \cdot 71}}{ } \text { at Gooty tunk }$	$0 \cdot 0$	0.000	1914-15	$0 \cdot 000$	0.000
194							
	"	$\begin{aligned} & \text { (i.T.S. } \\ & \text { B.M. on rock } \end{aligned}$	$0 \cdot 3$	- 2.689	1	- $2 \cdot 689$	-0.01
183	"	O on stone pillur	0.4	$+2 \cdot 346$	$\begin{array}{\|l\|} 1907.08 \\ 1914.15 \end{array}$	$+2 \cdot 341$	-0.003
18.	"		0.0	$+26 \cdot 467$	"	$+26.460$	-0.00i
189		G.IS.					
		O Manre civil dispen. B.M. sary	$1 \cdot 1$	+12.943	"	+12.926	-0.017

TABLE III.-REVISION LEVELLING
Discrepancies between the old and new heights of bench marks

Bench inarks of the original levelling that rere connected during revisionary operation.				Difference between orthometric heights, above ( + ) or below $(-)$ the starting bench-mark			Mifference   (Revision-   Original).   The sign   +denotes   that the   height   was   greater   and the   sign less   in 1922.23   than when   originally   levelled
	Degree sheet	Description		From publish d beights	Date of criginal levelling	$\begin{gathered} \text { From } \\ \text { revision } \\ \text { 192.23 } \\ \text { (Unaduust. } \\ \text { edj) } \end{gathered}$	

Revision of Part of branch line No. 57 D (Multän-Bahäwalpur).

				miles	feet	date	feet	feet
61	390	Embedded, Lodhrān		$0 \cdot 0$	$0 \cdot 000$	1914-15	$0 \cdot 000$	
59	"	On bridge	..	$0 \cdot 2$	$+5 \cdot 681$		+ $5 \cdot 666$	-0.015
62	"		...	$0 \cdot 8$	+ 5.845		+ 5.839	-0.006
63	"	On calvert	$\ldots$	$1 \cdot 1$	$+0.030$	"	+ 0.039	$+0.009$
${ }^{60}$	"	On bridge	...	$2 \cdot 2$	$+6.458$	"	+6.458	0.000
69	"	On railway bridge	...	$6 \cdot 4$	+17.092	"	+17.073	-0.019
70	"		$\cdots$	$7 \cdot 3$	+17.041	"	+17.015	-0.026
22	"	On regulator bridge		$9 \cdot 3$	$+1.277$	"	$+1.218$	$-0.059^{*}$
(20)	"	At bathing ghät	. $\cdot$	$10 \cdot 1$	+ 1.668	"	+ 1.602	-0.066*
19	"	At guest honse	$\cdots$	$10 \cdot 4$	- 0.875		- 0.964	-0.089*
18	"	At Municipal office	$\cdots$	11.3	- 1.655		- 1.727	-0.072*
${ }_{17} 17$	"	At Egerton Cottage	...	$11 \cdot 7$	- 1.523		- 1.571	-0.048
27	"	Standard, Bahãwalpar	...	$12 \cdot 1$	- 0.725	"	- 0.757	-0.032

Revision of Part of main line No. 57 (Murghai-Ferozepore).

98	44 J	Embedded, Fãzilka	$0 \cdot 0$	0.000	1860-61	$0 \cdot 000$	
99	"	Zine plate, at Railway Sta.	$0 \cdot 1$	$+5.211$	"	+ 5.206	-0.005
104	"	Well al encamping ground	$0 \cdot 3$	+ 8.292		+ 8.291	-0.001
100	"	Railway culvert ...	$1 \cdot 3$	+6.954	"	+ 6.966	$+0.012$
(24)	"	Stone B.M. Amira	$23 \cdot 9$	+ 33.908	"	+ 33.893	-0.015
\% 4	"	" Lakha	$37 \cdot 9$	+ 45.694	"	+ $45 \cdot 874$	+0.180
26)	"	Nawankila	$43 \cdot 5$	$+56 \cdot 592$	"	+ 56.846	+0.254
1	"	" ${ }^{\prime \prime}$ Ferozepore	$53 \cdot 6$	+65.831	"	+66.008	+0.177
${ }^{1}$	"	Standard, Ferozepore	53.9	+ 70.010	,'	$+70 \cdot 217$	+0.207

[^19]TABLE IV.—List of Great Trigonométrical Survey stations connected by spirit levelling, season 1922-23


TABLE IV.-(Concld.) List of Great Trigonometrical Survey stations connected by spirit levelling season 1922-23

Namc of station	Height above mean sea level			Difference	Remarks
	$\left\|\begin{array}{c}\text { New } \\ \text { spirit } \\ \text { leveling }\end{array}\right\|$	$\left\|\begin{array}{c}\text { Old } \\ \text { spirit } \\ \text { levelling }\end{array}\right\|$	$\left\lvert\, \begin{gathered}\text { Triagu- } \\ \text { lation } \\ \end{gathered}\right.$		
Bombay Longitudinal Series					
	feet	feet	Seet	feet	
$\left\lvert\, \begin{array}{lll} \text { Boribyãlar or } & \text { Bori } & \text { H.S. } \\ \text { A } 18^{\circ} & 25^{\prime} & 7^{\prime \prime} \cdot 76 \\ \text { L } & 74^{\circ} & 37 \\ \hline 8^{\prime \prime} \cdot 09 \end{array}\right.$	2002.982	$\ldots$	2002	-1	On rectangalar protecting pillar (most probably opper
Mangalore Meridional Series					
	2583.130\|	...	2582	-1	
Madras Meridional and Coast Series					
$\begin{array}{lll} \text { Ongole } & \text { H.S. } & \\ 1 & 15^{\circ} & 29^{\prime} \\ \text { L. } & 56^{\prime \prime} \cdot 85 \\ \text { L. } 80^{\circ} & 2^{\prime} & 26^{\prime \prime} \cdot 72 \end{array}$	$250 \cdot 072$	249.878	249	-1	Opper wark stone

TABLE V.-Results of comparisons of staves with standard steel tape No. 8, season 1922-23

Place and date	Difference of length of staves from 10 feet				Remarts
	No. of staft				
	$\mathbf{E}_{1}$	$\mathbf{E}_{2}$	$\mathrm{B}_{1}$	$\mathrm{C}_{1}$	
Line Ahmadnagar-Dhond					
Ahmadnagar 4.11-22   Ghavgaion   20-11-22   Belnandi 1-12.22   Dhond 13-12-22					
	-0.008889	$-0.002539$	-0.002230	$-0.001014$	Clear
	-0.002475	-0.000415	-0.000189	+0.000403	do.
	-0.000778	-0.000288	+0.000547	$+0.000652$	do.
	-0.001862	-0.001310	-0.001194	-0.000460	do.
Line Gotür-Kaladgi					
Dhond 13-12-22 Rāybāg R.S.29-12-22	-0.001862	-0.001310	-0.001194	-0.000460	Clear
	$-0.003740$				..'
		-0.002915	-0.001533	-0.001565	
Hakeri 8-1-23	-0.004772	-0.003622	-0.002947	-0.003072	Clear
Gotū 13-1-2E	-0.003746	-0.002730	-0.001669	-0.002287	
Madhol 29-1-23	-0.004875	-0.004573	-0.003738	-0.002725	...
Kalādg! 4-2.23	-0.005772	$-0.004172$	-0.004065	-0.003681	'.'
Madhol 23-2-23	-0.005289	-0.00366.	$-0.003521-0.002871$		'.'
Terdal 9-3-23	-0.002956	-0.002484	$-0.001985-0.002064$		...
Gooty K.S. 23-3-23	$-0.005630$	$-0.004875$	-0.003224	$-0.002681$	..'
Line Gooty-Ongole					
Gooty R.S.					
23-3-23	-0.005630	-0.00487i	-0.003224	-0.002681	.'.
Paniem 16-4-23	-0.003973	-0.003517	-0.002702	-0.002375	..
Nandyãl 7-6-23	-0.007002	-0.006709	-0.005266	-0.0052.11	ar
Velgadu 17-j-23	-0005458	-0.005790	-0.003504	-0.003950	Clear
Nandyäl 29-5-23	-0.006067	-0.006017	-0.003042	-0.003092	do.
Kalgotta 24-5.23	-0.0c6363	-0.006197	$-0.004497$	-0.004151	do.
Gotalgathu					
$\begin{aligned} & \text { I-6.23 } \\ & \text { Ongole R.S. } \end{aligned}$	$-0.005035$	$-0.004495$	-0.003960	-0.00.3910	Rain last niegt
12-6.23	-0.006006	-0.005983	$-0.004151$	-0.004510	Clear
Ongole R.S. 12-6-23	-0.004738	$-0.004638$	-0.004006	-0.00.4010	Scattered elonde

The party office closed at Mussoorie on 13th October 1923 and moved to Dehra Dūn. The recess season opened at Mussoorie on 15th April 1924. The Sutlej Group recessed at Dehra Dūn and No. 1 detachment at Maymyo.

The field organization was as follows:-
(a) Sutlej Valley Group under Mr. O. N. Pushong, with field headquarters at Bahāwalpur East.
(b) No. 1 double detachment (Burma), under Mr. S.C. Mukerjee.
(c) No. 2 single net detachment (Punjab), under Mr. Jiya Lal Sahgal.
(d) No. 3 single net detachment (Bombay), under Mr. P.B. Roy.
(e) No. 4 single net detachment under Mr. N. R. Mazumdar.
$(f)$ No. 5 special detachment under Mr. K. K. Das.
The Sutlej Valley Group having already completed its secondary levelling lines, was entirely occupied with tertiary levelling, of which 31,865 linear miles were run, covering 4,795 square miles in the Multān and Ferozepore districts and in the Bahà walpur State.

No. 1 detachment (Late No. 5) executed 659 miles of secondary double levelling for the Public Works Department (Irrigation) Barma.

No. 2 detachment (Late No. 6) carried out the back levelling of the lines Khānpur-Bahā walpur and Multān-Jhang, a combined distance of 236 miles. These form part of the line No. 105 of the new net.

No. 3 detachment carried out back levelling from Nakhtrana Mota to Viramgām, part of line No. 104 of the new net; a distance of 449 miles.

No. 4. detachment carried out back levelling from Märwār Pāli ria Barmer and Jaisalmer to Govardhanla, part of line No. 102 of the new net; a distance of 299 miles.

No. 5 detachment was occupied under the orders of the Superintendent Trigonometrical Survey, in assisting with a special gravity survey with an Eötvös torsion balance. The work was done for the Burma Oil Company in Sind.

The levelling done was:-
98小 miles of primary levelling in the back direction for the new net.
189.

659 miles of secondary levelling for the Burma Government.
31,865 miles ( 4,795 square miles) of tertiary levelling for the Punjab Government (Sutlej Valley Project). The work is generally satisfactory and outturn good.

Relevelment is still required along small portions of new net lines 101 and 105, of which the back levelling was run in $1922-23$ and
186.

Soason
1923-24.
187.

Field
Organization.
188. Outturn
189. 1923-24 respectively ; and of a branch line from new net line 104. The two former lines will be dealt with during the season 1924-25.

The back levelling of line 102 was stopped at Govardhanla br excessive heat and absence of water; leaving 55 miles between that place and Mithra (near Khānpur) to be completed.
Three single detachments are at present engaged in the ner net, the primary work of the party. The outturn should average 600 mils per annum of completed main lines. A new line has been added to the programme, from Hyderābād (Sind) to Barmer, and numbered 150. Old line 52 from Sukkur to Hyderābäd, will be revised by fore and back levelling of high precision, next field season, and may enter into any future adjustment of the new net.
(a) Sutlej Valley tertiary levelling.-Mr. O.N. Pushong bed charge in the field. There were five sections to begin with, each of about 14 levellers. One section was disbanded later, the personnel beng transferred to other sections.

The Group headquarters office opened at Bahāwalpur East on 15th October 1923 and the recess office under Mr. N. R. Mazumala, opened at Dehra Dūn on 8th May 1924.

Outturn of tertiary levelling

	Sind and Panjab		Babãwalpur State		Total	
100-acre rectangles	993 sq. miles		931 sq. miles		1,924 sq. miles	
25-acre rectangles	1,452		1,419	"	2.871	"
Totals	2,445	"	2,350	"	4,795	

2,236 linear miles of double and 29,629 of single levelling mere run, a total of 31,865 miles.
192. Cist rates. The cost rates were greatly reduced, through more time being longer field season, and lastly through there being a greater number of levellers and computers under approximately the same central staff.

Comparison of cost rates

Date	Field work		Recesa work		Total		Remarky
	100-acre	25-acre	100-acre	25-acre	100-acte	25-acre	
1929-23	$\begin{array}{r} \mathrm{RS} . \\ 23 \cdot 8 \end{array}$	$\begin{gathered} \text { R8. } \\ 47 \cdot 5 \end{gathered}$	$\begin{aligned} & \text { Rs. } \\ & 4 \cdot 4 \end{aligned}$	$\begin{aligned} & \text { Rs. } \\ & 8.8 \end{aligned}$	$\begin{gathered} \text { Rs. } \\ 28 \cdot 2 \end{gathered}$	$\begin{gathered} R S \\ 56 . ? \end{gathered}$	Exclading percentages or or pervision anu
1923.24	$17 \cdot 9$	$35 \cdot 7$	$3 \cdot 0$	$6 \cdot 0$	20.9	41.7	cost of insin ments.

These figures exclude the cost of fair drawing which was done by No. 2 Drawing Office.

The officer in charge was able to devote over half his time to pisiting the sections and various officials of the Bahãwalpur State and of the Sutlej Valley Project. A field computing section was instituted at the group headquarters, consisting of an upper subordinate officer and three computers. The field sheets as received from the levellers were at once computed to mean sea level height, so that work in recess was correspondingly expedited. This prevented undue delay in furnishing data to No. 2 Drawing Office for fair drawing the 4 -inch charts.

Statement of field work

	Officer in charge	No. of levellers	Date of commencement of work in blocks	Date of completion in block	Area in square miles		
					$\begin{gathered} 100 \\ \text { acre } \end{gathered}$	25-acre	Total
1	B. Mohammad Ishaq Khan 1 Camp recorder	$\left\|\begin{array}{c} 13 \text { increas. } \\ \text { ed to } 17 \\ \text { in J anuary } \end{array}\right\|$	Block R"   28th Oct.	$\left\|\begin{array}{c} \text { Block } T^{1} \\ 26 \mathrm{th} \\ \text { April } \end{array}\right\|$	236	543	779
*2	S. Nayar Hasan 1 Camp recorder	14	Block M 15th Oct.	-	-	349	349
3	Mr. H. K. Kar 1 Camp recorder increased to 2 in February	13 increased to 19 in January	Block S 17th Oct.	$\begin{gathered} \text { Block J } \\ \text { 20th } \\ \text { April } \end{gathered}$	914	710	1624
4	B. Mohd. Faizul Hasan   1 Camp recorder	14 increased to 16 for 1 month	Block N 15th Oct.	$\begin{array}{\|c} \text { Block } T^{1} \\ 26 \text { th } \\ \text { dpril } \end{array}$	377	682	1059
5	Mr. Abdul Majid up tro Jaunary Sycl. Nayar Hasan fiom Febraary 1 Camp recorder	14 increas. ed to 16 in January	Block B"   23rd Oct.	$\left\|\begin{array}{c} \text { Block T1 } \\ 26 \text { th } \\ \text { April } \end{array}\right\|$	347	587	984

Nos. 1 and 5 sections had difficult country, with much reed and thorn bushes, and it necessitated line clearing, as the rectangulation party had not cut any East-West lines. No. 2 section was disbanded owing to the shortage of qualified supervising officers, when one of them had to $g_{0}$ on sick leave.

Some inconvenience was felt when the subrectangulators who break down the 100 -acre rectangles for the 25 -acre portions of the survey, Were not kept sufficiently in alvance of the levellers; some of whon had conseduently to be shifted to other areas, to avoid their being kept only spasmodically occupied. This should not be necessary. The subrectangulation is unfortunately the work of an agency independent of
194.

Different sections and country and the sub rectangulation party.

[^20]194. the Survey of India, though working on No. 23 Party's field marks and (Contd.) providing further marks which No. 17 Party must use. Steps lare been taken to urge more speed and to try to obtain more frequent infor. mation as to subrectangulation progress. It is presumed that the Bahāwalpur State subrectangulation has been going forward during the summer.

The recess work consisted of :-
(i) completing the reduction of field heights to mean sea lerel,
(ii) compiling books of heights for the Chief Engineer, Sutlg Valley Project,
(iii) compiling manuscript charts of heights for No. 2 Dramig Office. All work was finished by the end of September 1924.

The copying of a duplicate set of books for departmental use ma discontinued, as the new charts contain the information in a more convenient form.
195. These charts are briefly referred to in § 162. The fair drawing has The charts. been taken over by No. 2 Drawing Office. Each chart contains all th? bench marks and tertiary heights falling in its area.

No. 1 detachment (Mr. S. C. Mukerjee in charge, P. John second leveller, two recorders and twenty-six menials) left Dehra Dūn for the felld on 6th October 1923, commencing work at Kyaukse on 24th Octlver 1923. Work closed at Natchaung (Moulmein) on 28th May 192w, and the detachment proceeded to recess in Maymyo on 2nd June 1924. The season's work consisted of secondary double levelling for the P.IT.D. (Irrigation). The bench marks were provided by that department atiter their own pattern. The resulting heights were sent to the officials concerned by the end of recess. They will not be published in the panpllides, being derived from secondary levelling only, but communicated to the Director Burma Circle, for departmental use.

Secondary levelling in Burna, season 1923-24

Line	Miles	p.e. per mile	Number of bench marks	Remarks
(a) Kyaukse to Minza	62	$\pm 0.0030$	49 secondary	
(b) Ywakainggyi to Amarapura ...	97	$\pm 0 \cdot 0029$	$46$	
(c) Kyaukse to Mandalay ...	107	$\pm 0 \cdot 0030$	$\left\{\begin{array}{c} 55 \\ \& 1 \text { primary } \end{array}\right.$	
(d) Moiktila to Yewe...	50	$\pm 0 \cdot 0025$	$\left\{\begin{array}{c} 28 \text { secondary } \\ \& 2 \text { primary } \end{array}\right.$	
(e) Kyanktaga to Myit. byo ...	80	$\pm 0 \cdot 0023$	$\left\{\begin{array}{c} 65 \text { secondary } \\ \& \text { l primary } \end{array}\right.$	
(v) Dalanan to Paznnmyanng	37	$\pm 0 \cdot 0019$	27 secondary	
(g) Monlmein to l'a-an	4.2	$\pm 0 \cdot 0034$	$\left\{\begin{array}{l} 23 \\ \& 1 \text { primary } \end{array}\right.$	
(i) Moalmein to Wekali	24	$\pm 0 \cdot 0025$	$\left\{\begin{array}{l} 7 \text { secondary } \\ \text { \& l primary } \end{array}\right.$	
(i) Ba-Bu-Kon to Kawmyat Lisi ...	78	$\pm 0.0022$	$\left\{\begin{array}{r} 33 \text { secondary } \\ \& 1 \text { primary } \end{array}\right.$	
(j) Nyaungbinzeik to Natchaung ...	82	$\pm 0 \cdot 0017$	38 secondary	
Total ...	659			Z

The outturn is good especially as the lines were scattered over a large area of country, including the coastal tract in Amherst and Thaton.

The health of the detachment was generally good.
The recess in Maymyo was undertaken with a view to lessening expense. The saving effected is roughly Rs. 500, assuming that for a recess in Mussoorie, a field lihamal would be kept in Burma. On the whole it seems disadvantageous.

Levelling on line 105 of the new net of India.-No. 2 detachment (Mr. Jiya Lal Sahgal in charge, one recorder and fifteen menials) left Dehra Dün on 26 th October 1923, and commenced work at JhangMaghianna on 31st October 1923. It closed at Khānpur on 18 th February
197.

The work consisted of the back levelling from Jhang-Maghiana to Multãn, and from Bahiswalpur to Khāupur. The old bench masts being mainly found unaltered in height, the computations have ben carried out as for a revision. The heights (outside $1 / \mathrm{x}$ sheet 44) base not been finally computed, owing to relevelment of some short strecths being left over till the field season 1924-25 for No. 4 detachmen. For this reason also the probable error of the line does not at preant satisfy the requirements of levelling of high precision.

The outturn is shown in Table No. VI. The instruments wer Bion. cular level No. 6728, staves Nos. 20A and 20B, and standard stellape No. 3.

The health of the detachment was good.
Line 104.-No. 3 detachment (Mr. P. B. Roy in charge, one recorter and fifteen menials) left Dehra Dūn on 8th October 1923, and conmenced work at Nakhtrana Mota, Cutch, on 25th October 1930. It closed at Viramgàm on 19th June 1924, and proceeded to Mussorie

The work consisted of back levelling throughout.
Further relevelment is required on a branch line near Anjar, Cutch, which was run at the request of the Geological Survey, and whied crosses a known fault in a tract subject to earthquakes. This relerel. ment may be done in 19:5ั-26.

The probable accidental error of the line

$$
\begin{aligned}
& \left.\eta_{r^{9}}=\frac{1}{9}\left(\frac{\Sigma \Delta^{2}}{\Sigma L}-\frac{\Sigma^{2}}{(\Sigma L}\right)^{2} \cdot \Sigma \frac{\mathbb{S}^{2}}{\mathrm{~L}}\right) \text { is } \pm 0.00370 \mathrm{ft} . \\
& \text { And probable systematic error } \\
& \sigma_{\mathrm{r}}{ }^{2}=\left(\frac{1}{9 \Sigma \mathrm{~L}} \cdot \Sigma \frac{\mathbf{S}^{2}}{\mathrm{~L}}\right)
\end{aligned}
$$

both being within the limits for high precision levelling.
The outturn is shown in Table No. VI. The instruments wer les pattern level No. 16298, staves Nos. 16 A and 16 B , and standard tell tape No. 7.

High winds caused much inconvenience during levelling.
The health of the detachment was fairly good; there was ane sickness among the ki/nalasis owing to heat and water scarcity, tonadk the end of the field season.

The heights have been adjusted between Nakhtrana Mota nold Rājkot standarıl beuch marks, and between Räjk ot and Viramgam.

Line 103.-No. I detachment (Mr. N. R. Mazumdar in charge one recorler and fifteen menials) commenced work at Marrwâr Pali on 2 ith November 192:3, (being delayed by late posting of Mr. N. R. Mazmmart and elosed at Gorarilhanla on 30th $\mathrm{A}_{\text {pril }} 192 \mathrm{l}$, leaving a gap of 3 mile between there and Mithra, near Khānpur. This was necessitated br extreme heat which rendered the k/halasis nufit for work, and by the impossibility, at that season, of procuring local labour.

The work consisted of back levelling throughout. The probable arrors for the line accidental and systematic, are $\pm 0.00413$ and $\pm 0.00018 \mathrm{ft}$. per mile respectively, which satisfy high precision requirements.

The outturn is shown in Table No. VI. The instruments were Zeiss pattern level No. 16313, staves Nos. 19A and 19B, and standard steel tape No. 4.

Heat, storms and lack of water delayed the work after mid April; uril then the health of the detachment was good.

The number of the triangulation stations connected by levelling is shown in Table No. VIII.

With a view to further construction of standard bench marks, and to avoid having to run long lines of levels to connect them, many inseribed bench marks were put down and observed at Jhang-Maghiāna, Bhaj, Jorya, Wadhwān, Barmer and Jaisalmer.

The details of the work of old No. 4 detachment in 1922-23 in Bombay and Madras are given in Tables VI, VII.

Squads have been reduced to 26 menials for a double, and 15 for a single detachment including personal men. The extra recorders have dso been abolished.

Investigation of the frequency of relevelling during the back lerelling of net lines during the last few years, shows that $38 \%$ of the mileage has had to be relevelled in the field; for two thirds of this, the lore leveller's values were discarded. The first inference is that the lore leveller's work ought to be made more accurate. He has no running check during the field work on his observed heights, as the back lereller has. In future, therefore, every leveller on a high precision line must at each station obtain two sets of readings giving values of tise or fall within 0.003 ft . instead of 0.004 ft .

One alternative reason for so much of the fore levelling having to be rejected, might be the movements of bench marks in the period of time elapsed between the observations. Bench marks are usually built before the monsoon rains in order that the fore levelling in the following old weather may find them settled into stable positions. The one or tro rainy seasons intervening before the back levelling might in wet countries, defeat this intention; but in dry areas as well the fore levelling is disearded much more often than the back levelling.

The levelling policy of the future has been unter reconsileration. A great number of standard bench marks are to be crectel, and as in the past these will be properly maintained. The preservation of other bench marks is considered to be the work rather of local enginerts who derive the main benefit from them. There will be mpuim lin Inlia a total of over 6i00 standard beuch mark:. The question still remuins whethor the new net lay-out will be diseardel, and the high precivion
201.
(Contd.)
202.

Instruments and weather.

## 203.

Squads.
204. Investigation with frequency of re-
levelling. policy.
205. levelling programme be governed by the necessity, from year to year, for
206.

History of Indian high precision levelling.

207
Handbook of levelling and other Publications. lines connecting these new standards to existing level lines.

A new type of standard bench mark is being designed with a viem to curtailing expense, and to providing concealed subsidiary mark, in addition to the point of reference for public use.

In the meantime, the new net is being advanced in 1924-25 by the fore levelling from Karāchi to Barmer. The remaining levelling of high precision is being run partly for local irrigation purposes and partly for the purpose of fixing standards; of which 6 of the old tye and 23 of a provisional design for smaller towns are for immediate construction. The standard bench mark at Sādikganj was proridel with its slab showing height above mean sea level.

A report was written for the International Geodetic and Geophyical Union 1924, giving the history in brief of Indian high precisionlerel. ing since its introduction just before the war.

Preliminary steps have been taken towards the reconnaissance of a route over which might be run a connecting line between the lefel systems of India and Burma.

The Handbook "Levelling of Precision" 1920, has been revised with a view to republication. A form has been printed for use in bor tape comparisons at Dehra Dūn. A new form was devised and printed for use as a field sheet of Sutlej Valley tertiary levelling. The folloring press copies were sent to press.

Pamphlet for 1/m Sheet 44 .
Correction slips sent to press

Line	Degree sheet
33 B	47 I and J
14 A	$57 \mathrm{E}, 57 \mathrm{I}, 57 \mathrm{M}$ and 66 A
14 B	57 I

The arrears of publication are:-
Jacobäbäd to Jhang (requires relevelments in 1924-25; portion in 1/m sheet 4t sent to press). Manmãd to Ahmornagar (awaits shedis levelling near Manmad. Ahmarlnagar to Dhond, mil Poona to Almatnagar will then require readjustment and republication). SuratDhūlia (fore levelling only as yet). Marwār Pāli-Khảnpur (bars levelling will be completed next season). Branch line at Anjâr (Cuthl) reguires some relevelling.
TABLE VI.-Tabutar statement of outturn of woork, season 1923-24


* Check levelling.
TABLE VI.—Tabular statement of outturn of work, season 1923-24-(Contd.)

TABLE FI.-Tabular statement of outturn of work, season 1923-21-(Contd.)

TABLE VI.-Tabular statement of outturn of work, season 1923-24-(Concld.)


TABLE VII.-CHECK LEVELLING
Discrepancies between the old and new heights of bench marks


TABLE VII.-CHECK LEVELLING—(Contd.)
Discrepancies between the old and new heights of bench marks


## TABLE VII.-CHECK LEVELLING—(Contd.)

Discrepancies between the old and new heights of bench marks


## TABLE VII-CHECK LEVELLING-(Contd.) <br> Discrepancies between the old and new heights of bench marks



* The worls was done ly old No. 4 detacbment in 1922.83.

TABLE VII.-CHECK LEVELLING-(Concld.)
Discrepancies between the old and new heights of bench marks


* The work was done by old No. 4 detachment in 1922-23.

TABLE VIII.—List of Great Trigonometrical Survey stations connected by spirit levelling, season 1923-24


TABLE VIII. - List of Great Trigonometrical Survey stations connected by spirit levelling, seasom. 1923-24-(Contd.)

*This value is obtained by old spirit levelling done in conjanction with the tringulation.

TABLE VIII.—List of Great Trigonometrical Survey stations connected by spirit lerelling, season 1923-24-(C.oncld.)


TA BLE IX.—Resulls of comparisons of staves with standard steel tape No. 2, season 1923-24

Place and date	Difference of length of staves from 10 feet				Remarts
	No. of Staff				
	23 B	22B	134	13B	
Eyankse 25-1) 1 -23	+0.001882	+0.001116	-0.000903	$-0 \cdot 000921$	Light scattered clouds and cool brecze.
Nagu 4 4-11-23	+0.001638	+0.000564	-0.001168	-0.000588	Scattered clouds.
Mrittha 15-11-23	$+0.002195$	+0.001314	-0.000462	$-0 \cdot 000365$	Cloudy.
Kjngyi 26.11-23	+0.000697	-0.000288	-0.000730	-0.000817	Scattered clonds.
Tangd win $8 \cdot 12 \cdot 23$	+0.000869	-0.000413	$-0.001727$	-0.001388	Clear.
Amarapura Shore 22.12-23	+0.001815	+0.001014	-0.001069		
Sejwa $2-1-24$	$+0.002164$	$+0.001587$	$-0.000328$	$+0.000327$	Light scattered clouds aud cool breeze.
Tadainshe					
14-1.24	+0.001663	+0.001249	-0.000608	-0.000385	Clear.
Pinywa 26-1.24	+0.005842	+0.000972	-0.000373	$+0.0010073$	Light scattered clouds.
$\left\lvert\, \begin{aligned} & \text { Kyank taga } \\ & 8 \cdot 2-24 \end{aligned}\right.$	+0.000369	-0.000801	-0.001553	-0.000539	Clear and cool brecze.
Dalazeik 17-2-24	$+0.000551$	$+0.000206$	-0.000786	-0.000656	Clear.
Dalanon 2-9-24.	+0.001015	+0.000665	$-0.001100$	-0.000926	Clear and cool breeze.
Nyangglebin					
16-3-24	-0.000156	-0.000476	-0.001944	-0.001847	Scattered clonds.
Payapyo 30-3-24.	$+0.000176$	+0.000042	$-0.001927$	-0.001820	Clear and cool breeze.
Tarana 11-4-24	$+0.001169$	+0.000843	-0.000651	-0.000777	
Kyain 24-1-24	$+0 \cdot 000305$	-0.000072	-0.001377	-0.000095	Light scattered cloads.
Peinnegon E.5.24	+0.002587	+0 002321	+0.000654	$+0.000590$	Scattered clouds and cool breeze.
Nawlon Kivin . $1 \cdot 5 \cdot 24$	+0.002318	+0.002517	+0.000600	+0.000574	Scattered clouds.
Natchaung $23-5 \cdot 24$	+0.002577	+0.002240	+0.00065	+0.000684	"

TABLE IX.-Results of comparisons of staves with standard sleel tape No. 3, season 1923-24-(Contd.)

Place and date		Difference staves fro	f length of m 10 feet	Remarks
		NO. of Staff		
		20A	20B	
Jhang-Maghiāna	2.11-23	-0.000137	+0.000191	Clear
Rustam Sargana	10-11-23	$+0.000560$	-0.000041	
Rustam Sargana	20-11.23	$0 \cdot 001655$	-0.001443	
Darkhins	28-11-23	-0.001108	-0.002059	Cloady
Abilal Hakim	6-12-23	-0.001734	-0.001008	Clear
Cing 14 (I'hal Chumu)				
Cima 14 (Ital	16-12-23	$-0.001856$	-0.001633	
Abdul ITahim	28-12-23	-0.001893	-0.000818	
Kabirwäla	5-1-24	-0.002554.	-0.001880	Scattered cloods
Kädirpur Rann	13-1-24	-0.001626	-0 000632	
Kädirpur Ranu	21-1-24	-0.002756	-0.001743	Clear and windy
Bahawalpar	24-1-24	-0.002112	-0.001374	Scattered clonds
Mubärakpar	31-1-24	-0.002396	-0.001696	Light scattered clouds
Cbāulri	10-2-24	-0.002514	-0.002032	Clear
Khănpar	19-2-24	-0.002743	-0.002162	"

TABLE IX.-Results of comparisons of staves with standard steel tape No. 7, season 1923-24-(Contd.)

Place and date		Difference of leugth of staves from 10 fect		Remarks
		No. of :staft		
		16A	16 B	
Nakhtrada Mola	24.10-23	-0.005757	+0.000098	Scattered clouds
	1-11-23	-0.006902	-0.000722	Clear
Majal	8-11-23	-0.007078	-0.000945	"
Samatra	16-11-23	-0.009588	-0.002313	
Bhnj	24-11-23	$-0 \cdot 009131$	$-0.002588$	Light scattered clouds
Salabavas-ka-Tal	3-12-23	-0.010454	$-0.003294$	Clear and cool breeze
Kälaghogha	10-12-23	-0.009573	-0.002882	
山avdra	19-12-23	-0.0019170	-0.002117	Clear
	31-12-23	-0.010762	-0.003271	Clear and cool breeze
Khedoi	10-1-24	-0.010419	-0.003190	
Anjü	33-1-24	-0.011429	-0.063673	Clear and high breeze
Bhachiñ	$30-1.24$ $6-2.24$	-0.010795 -0.010265	-0.003391 -0.03084	Cloüdy ${ }^{\text {and cool }}$ cö
Stin	$6-2.24$ $17-2-21$	-0.010265 -0.010722	$-0 \cdot C 03084$ $-0 \cdot \operatorname{cos131}$	Cloudy and cool breeze Clear
Bhela Mota	25-2-2.1	-0.010663	-0.C03067	Scuttered clouds \& high breeze
Balambha	4-3-21	-0.010440	-0.002912	Clear and high wind
Dhrol	13-3-24	-0.0.11055	-0.C0.4117	Clear aud high breeze
Targari	23-3-24,	-0.010385	-0.002149	Clear
Anandpar	2-4-24	-0.012212	-0.004450	
Chotila	9-4-24	-0.011527	-0.004361	Clear and high wind
Molri	17-4-24	-0.011399	-0.003504	Clear
Muli	25-4-24	-0.011942	-0.00:952	Clear and high wind
Wadhwān	8-5-24	-0.011502	-0.003712	Clear and hot wind
Sheilhpur	18-5.24	-0.010446	-0.00222	Scattered clouds and breeze
Bäla	28-5-24	-0.010582	- $0 \cdot 102024$	Clear and high wind
Lilapur	8-6-24	-0.010810	- 0.003494	, " $\quad$, breeze
Viramgàm	15-6-24	-0.009009	-0.003521	Light clonds and high breeze
"	19-6-24	-0.000801	-0.602285	Drizzling

TABLE LX.-Results of comparison of staves with staudard steel tape No. 4, sectson 1923-24-(Concld.)

Place and date		Difterence staves fro	f leugth of 10 feet	Remarks
		No. of staff		
		19A	19 B	
Mārwār Pāli	26-11-23	-0.001792	-0.001958	
Rohat	3-12.23	-0.001656	-0.001814	
Luni	14-12-23	-0.002349	-0.002286	
Dundara	24-12-23	-0.001946	-0.002030	
Samdari	30-12-23	-0.001920	-0.00176 J	
Balotra	8-1-24	-0.002926	-0.002562	
Baitu	16. 1-24	-0.002962	-0.003112	
Bhimarlai	22-1-24	-0.004127	-0.003877	
Barmer	31. 1.24	-0.002763	-0.002864	
Barmer	9-2.2.t	$-0.003700$	-0.003411	
Bhadleo	16. $2-24$	-0.004.526	-0.04860	
Shew	3-3.24	$-0.003989$	-0.003810	
Bhailani	15-3.24	-0.005013	-0.004763	
Jaisalmer	1. 4.24	-0.001344	-0.004519	
Bayasaki	11-4.24		-0.004909	
Govardhanla	24-4-24 $30-4.24$	-0.005519 -0.005389	$-0 \cdot 00-269$ $-0 \cdot 005175$	

The field office opened at Bahāwalpur East Railway Station on 29th October 1924, and the recess office opened at Mussoorie on 20th April 1925. No. 1 detachment recessed in Mussoorie, the Burma programme having apparently been finished with this season's work. The Sutlej Valley Group recessed in Dehra Dūn as usual.

## The field organization was as follows :-

(a) Sutlej Valley Group under Mr. N. R. Mazumdar, with field headquarters at Bahãwalpur East Railway Station.
(b) No. 1 double detachment under Mr. S.C. Mukerjee, in Burma.
(c) No. 2 single detachment (net) under Mr. A. A. S. Matlub Ahmad, in Sind and Western Räjputàna.
(d) No. 3 single detachment (net) under Mr. H. C. Banerjea b.a., in Bengal, Bihār and Orissa.
(e) No. 4 single detachment (net) under Mr. Jiya Lal Sahgal, in the Pumjab and Sind.
(f) No. 5 double detachment under Mr. P. B. Roy, in Bengal, Bihar and Orissa.

The Sutlej Valley Group continued its tertiary levelling in the Multän, Montgomery, Lahore and Ferozepore districts and in the Bahäwalpur State. 37,525 linear miles were run, covering 4900 square miles.

No. 1 detachment executed 307 linear miles of simultaneous double levelling of secondary precision for the Chief Engineer, P.W.D. (Irrigation) Burma, in the Shwelo, Sagaing. Tharrawaddy, Insein, and Pegu districts (precision methods however being employed for the check levelling at Rangoon and Pegu), and 327 Ilinear miles ( 6 square miles) of tertiary levelling on the Yenangyaung oil held for the Burma Oil Company.

No. 2 detachment exceuten 198 miles of levelling of high precision in the fore direction from sukkur to Hydrabäd; this line, referred to in $\$ 190$ as old line 52 , has been given a new number 101 A ; and 213 miles of lerelling from Hyderibaid to Barmer, along line 150 .

No. 3 detachment exceutoll $11: 3$ miles of levelling of high precision in the fore direction on line 121 from Hownah vii Milnapor to Jaleswar ; 108 miles on new line 121 A from Mohanpur (Miduapore) to Ränignajj ; 239 miles ou new line lis Riniganj to Dinaipur.

No. 1 detachment exceuterl $12: 3$ miles of lovelling of high precision in the fore direction on line 101 from Karichi to Kotri, and ;) miles on line 150 from Kotri to Hvderābād, and 86 miles in
210. the back direction on line 102 from Govardhanla to Bhutta Sheikh, and 198 miles on line 101 A from Hyderābād to Sukkur. It also carried out the relevelments of short lengths of lines 101 and 105 (vide §189).

No. 5 detachment executed 150 miles of simultaneous double levelling of secondary precision for the Calcutta Corporation, in the 24 Parganas district, and 168 miles for the Chief Engineer, last Indian Railway, between Howrah and Hazāribägh Road.

Officers under training at Dehra Dūn executed a short length of fore and back levelling of high precision along line 61 A , con. necting 4 new secondary bench marks.

Topographical levelling was carried out in Mussoorie by a lereller lent to the Director, Northern Circle.
211.

Summary.
212.
he new level net.

The levelling done was:-
284* miles of primary levelling in the back direction.
$\begin{array}{rll}1029 & ", & ", \quad \text {, } \\ 685 & ", & \text { secondary levelling. " fore " } \\ 37,852 & ", & \text { tertiary levelling, covering } 4906 \text { square miles. }\end{array}$
The secondlary and tertiary worlk was done for local governmente. The calculated probable errors of the completed portions of main lines of the net satisfy high precision requirements. The relevelment necessary on the branch line from 104 will probably be done in 1920.2. The back levelling of 102 had to be continued past Mithra, to Bhutta Sheikh, as the values of bench mark at Mithra did not agree.

The results of the work on line 101 A are not satisfactory. This line along old line 52 was undertaken for the Lloyd Barrage Engineers. There was poor levelling in both directions, which unfortunately did not show up as disagreements between fore and back. On other lines there are large discordances between the fore levelling of this season and the old published height differences. These will probably be cleared up by the $1925-26$ back levelling.

The following new lines have been arded to the net:101 A from Sukkur to Hyderabad (branch line).
121 A from Mohanpur (Midnapore) to Rimiganj (branch line). 150 from Kotri ((Hyderabid) to Barmer.
151 ," Raniganj to Dinajpur.
152 ., Rajkot to Porbandar. 136 now runs from Jhang to Lahore.
137 ", ", Ambüla to Lahore.
138 " ", ", Delhi to Ambila.

139 ", ", Ambãla to Morādābäd.
153 " ", ", Delhi to Meerut and Bareilly.
But otherwise the net stands as shown in Record Volume XV. The programme of the next two seasons is the completion of 101 ,

[^21]108, 113 (Surat-Dhālia portion), $119,121,121$ A, 150 and 151, and the fore levelling of 104 (remaining portion), 106 (remaining portion), 136, 137 (remaining portion), 139 (remaining portion) and 152.
(a) Sutlej Valley tertiary levelling-Mr. N. R. Mazumdar in charge. There were five sections, one of which had to be broken up and the staff sent to other sections, owing to the section officer having to go on medical leave.

There was much delay in starting the field work, the railway line from Dehra Dūn having been broken by floods; the spare time in Dehra Dün was spent in training new levellers, and giving practice to others. The season opened at Bahāwalpur on 19th October 1924, and field work closed at the end of March 1925.

The outturn was as follows, all being tertiary levelling:-

	Punjab	Bahanwalpur State	'T'otal
100-acre area	sq. miles 542	*q. miles	sq. miles $\overline{\mathrm{c}} 42$
$2 \overline{5}$-acre area	1106	3252	4358
'Total	1648	3252	$\pm 900$

1855 linear miles of double and 35,670 of single levelling were run, a total of 37,525 miles. Ground heights were given to 354,300 points.

The cost rates were again reduced, owing probably to the fact that the bulk of the men were fully trained, and also to there being good supervision. The outturn was very grood.
(Contd.)
213.

Details of field work. Sutlej valley tertiary levelling.

Cost rates compared-

214.

Cost rates compared.
215. Computation in the field.

The Officer in charge was able to inspect his men constantly. The computing section at the group headquarters was reinfored in the middle of the season, in order to meet the Chief Engineer's demand for the rapid supply of charts. 72 manuscript spot height charts were supplied to the Officer in charge No. 2 Drawing 0ffice during the field season.

The sections were organized as below:-

	Officer in charge	No. of leveller and recorder	Blocks No.	Date of commence ment of work in block
1	Мг. Н. К. Каг	1 Camp recorder iñ levellers later on 17	$\begin{aligned} & \mathrm{I}^{\prime}, \mathrm{J}^{\prime}, \mathrm{K}, \mathrm{~N}^{\prime} \mathrm{O}^{\prime}, \mathrm{R}^{\prime} \\ & \mathrm{B}^{\prime \prime \prime}, \mathrm{C}^{\prime \prime \prime}, \mathrm{J}^{\prime \prime \prime}, \mathrm{S}^{\prime}, \mathrm{I}^{\prime \prime} . \end{aligned}$	1st November 1924.
2	Babn Muhammad Ishak Khan	1 Camp recorder 12 levellers later on 17	$\begin{gathered} \mathrm{y}^{\prime \prime}, \mathrm{v}^{\prime \prime}, \text { (half) } \\ \mathrm{Z}, \mathrm{~F}^{\prime}, \mathrm{A}^{\prime}, \mathrm{C}^{\prime}, \mathrm{G}^{\prime}, \mathrm{H}^{\prime}, \mathrm{Z}^{\prime} . \\ \text { (half) } \end{gathered}$	29th October 1924.
3	Babu Madammad Faizul Hasan	1 Camp recorder 16 levellers later on 17	$\underset{\text { (half) }}{\mathrm{C}^{\prime \prime}, \mathrm{D}^{\prime \prime}, \mathrm{Z}^{\prime}, \mathrm{E}^{\prime \prime}, \mathrm{F}^{\prime \prime}, \mathrm{Z}^{\prime \prime}}$	$\begin{aligned} & \text { 30th October } \\ & 192 \text {. } \end{aligned}$
4	Babu Saiyid   Nayar Hasan	1 Camp recorder 16 levellers later on 14	$\mathrm{I}^{\prime \prime}, \mathrm{J}^{\prime \prime}, \mathrm{K}^{\prime \prime}, \mathrm{N}^{\prime \prime} ; \mathrm{O}^{\prime \prime} ; \mathrm{il}^{\prime \prime}$	$29 \mathrm{tl} \text { October }$ $1924$
$\bar{\square}$	Mr. Nabidad Kban	1 Camp recorder 14 levellers.   This section was dispersed at the end of Febrnary.	$W^{\prime \prime}, \Gamma^{\prime \prime}, \mathrm{S}^{\prime \prime}, \mathrm{R}^{\prime \prime}, V^{\prime \prime}$	$28 t$ Octoler $1!24$.

216. No. 2 section had the most difficult ground with much jungle. Condition of Nos. 3, 4 and 5 worked in very easy country with large expanses of the country levalled. flat pot and sand ridges rumning generally cast and west. Water had to be carried from tobris (small ponds), sometimes for lonts distances. Health was generally very goorl.

There was no difficulty this year as regards hing held back ly the subrectangulators.
217. Recess work.

The recess office opened at Dohra Dün on 1 1th April. The field work covered 329 four-inch charts, of which the data for it 2 were sent to the Drawing Office from the firld; the remaining $2 . \mathrm{H}^{\circ}$ were finished during the recess.
(b) Burma secondary levelling.-No. 1 detachment under Mr. S. C. Mukerjee, left recess quarters at Maymyo on 1st November 1924; the second leveller P. John and the squad, joining them at Tangôn (Shwebo district). The lines of secondary precision, all run for the Chief Engineer P. W.D. (Irrigation) Burma, were as follows:-

Line	Miles	No. of new bench marks
(a) Taugôn to Sliwebo	65	21
(b) Kabo to Mrittaw	92	67
(c) Okshitkan to Paukkau	78	31
(d) Ibonze to Rangron	110	69
(e) P'egu to Keuyaungbin	5	1
(f) Myitliyo to Olipo	7	2
(g) R. D. No. $\mathbf{2}^{2}$ of lenwe embankmernt to Uaw	10	4
'lutal	367	195

The lines lay along the following routes :-
(a). Along the railway line to Tantabin, thence along the road tu Kabo, thence along the Shwebo main canal to Okshitkan and thence along the road to shwebo.
(b). Along the Ye-u main canal to Tantabin, thence along a distributary and across country to Thayetkan, thence along Mayagan branch canal to Nyaunghla and thence along the road to Myittaw.
(c). Along Hladaw branch canal to Shwebangon, thence along road and distributary No . 3 of Hladaw branch canal to Thayetkyi, thence along village cart track to Sadaung and thence along the road and railway rír Palu to Paukkan.
(d). Along Rangoon-Prome road rit Insein to Rangoon. The branch linc to Paunggyi was run along Rangoon-Pegu and HleguPaunggyi road.
(e). Along Pegu-Tawa road bamd.
$(f)$. Across country along right bank of Sittang river.
(g). Across country wiit Daiku along Kawlia stream.

The bench marks wore built by the P.W.D. after their own pattern. The resulting heights were sent to the Chief Engineer during the recess. The detachment closed work at Pegu on 26 th May 192.), and proceoded to recess in Mussmorie. Health was good throughout the season.
(c). Ruma tertiary levelling. ... Yomangaung (Marwe district). This was carion out by No. Alodachment in the interval between the Shwebo and lusein secondary lines. It consisted of single levellines,

Burma secondary levelling
219. Burma Circle. The country was hilly and much cut up by nilas, (Contd.) The area was first enclosed in two double levelling circuits, connected to bench mark $6 / 84 \mathrm{~L}$; no other mark remained undisturbed within practicable distance. These circuits were divided and subdivided br means of single levelling. Lines had to be run along the banks and also the bottoms of nälags. The heights were adjusted in the field on closing each line, and at once given to the topographical survegors; no work being left for recess. The results are probably correct to 0.1 ft . A good deal of time was lost through the levellers haring to revisit places already levelled over, it having been found that they had given too few heights. It had not been possible, in the time available, for the topographical surveyors to mark on the ground beforehand all the points for which they required values.
220.

Results of lavelling carried out, and closing errors

The results are as follows:-


Number of heights :-

1. Iron pipes about 3 inches in diameter, embedded in masonry blocks; masonry pillars with iron plates on top; circles on plinths and structures

273
2. Wooden platforms of oil wells ... $\ldots 1018$
3. Very temporary heights, iron pipes and ground levels $\frac{3039}{4369}$

Sets up .......... 4606
93 working days for two levellers, including rest.
Closing errors

Circuits	Grentess	Least	$\Lambda$ verage	Remarks
Main circuits	$\begin{gathered} \text { feet } \\ 0.05 t \end{gathered}$	$\begin{gathered} f e c t \\ 0.001 \end{gathered}$	jeef	...
Sub circuits ...	$0 \cdot 040$	$0 \cdot 003$	$0 \cdot 013$	On tying to main cir cuits, average length $2 t$ milcs.
Minor liaes ...	0.081	$\cdots$	0.021	On tying to maiu circuils or sub circuits.

(d). Calcutta Corporation (Drainage)-- secundary levelling. - $\mathrm{T}_{\mathrm{i}}$ ) undertake this and also the East Inclian Jimilway Companys work as given in $\$ 222, \mathrm{No}$. $\overline{\mathrm{j}}$ r clouble detachment was formed in January 1925, under Mr. P. B. Roy, with secomed leveller Babu Indra Singh, two recorders and twenty-six menials. The programmes carried out, consisted of 150 miles of double lecelling, mainly along
the Bidyādharī, Piāli and Mātla rivers. Work commenced at Calcutta on 28th January, and closed at Nārāyanpur on 22nd March 1925. 268 new secondary bench marks were connected including 118 Marine sockets. These were as described in G.T.S. Volume XIX page 58, except that their length was only $4 \frac{1}{2}$ feet. They were generally found to be somewhat loosely driven into the ground, and consequently unstable. The whole country is low lying allurial land.

The work consisted of the following circuits:-
Line No. 77 Q. Bench mark 368/79 B south-east wards viā Sealdah to Nārāyanpur and back over the same marks to Calcutta, ... ... 59 miles
Line No. 77 R. Nãrāaynpur, Port Canning, Kultali,
Piāli to Nārāyanpur along Bidyādharī, Mātla und
Piāli rivers ... ... ... 91 ,
Total $\overline{150 \text { miles }}$
The p.e. for the first circuit, on which the rest of the work depended, is $\pm 0.0025 \mathrm{ft}$. per (mile) ${ }^{\frac{1}{2}}$ and for the other it is $\pm 0.0040$.

The health of the detachment was good.
The heights were computed in recess and sent to the Executive Engineer (Drainage) of the Corporation.
(e). East Indian Railway-secondary levelling.-This double levelling of secondary precision was carried out by No. 5 detachment. Work commenced at Howrah on 23rd March 1925, and closed at Sitarampur Junction on 5th June 1925, when the detachment proceeded to recess in Mussoorie.

It forms the first season's work of a large programme of levelling from G.T.S. bench marks to marks made by the Railway Administration along their lines.

The following lines were run:-

221. (Contd.
222. East Indian Railway secondary levalling.
222. (Conta.) p. e. $=\frac{2}{3} \sqrt{\frac{\Sigma \delta^{2}}{4 M}}$ is $\pm 0.0036 \mathrm{ft}$. and $\pm 0.0033 \mathrm{ft}$. per (mile) ${ }^{\frac{1}{2}}$ respec. tively. 1 new primary and 268 new secondary, and 1 old primary and 78 old secondary bench marks were connected.

The railway bench marks consist of :-
(1) the vertical type of inscribed bench marks, i.e. inscribed stones fixed vertically in the walls of railway buildings.
(2) the pillar type; stone blocks $2^{\prime} \times 2^{\prime} \times 9^{\prime \prime}$ resting on palka masonry pillars about 3 feet high and 2 feet square.
The health of the detachment was good until the close of the season.
223.

Levelling of the new net line 101.
224. Inatruments used.
(f) No. 4 detachment.-Levelling on the new net line 101.

The fore levelling of the portion between Karāchi standard bench mark and Kotri was carried out by No. 4 detachment Mr. Jiya Lal Sahgal), work commencing at Karachi on 8th December 1924, and closing at Kotri on 21st January 1925. The detachment then took up lines 150 and 101 A . The fore levelling from Manor T.O. to Karāchi, involving the crossing of the harbour, has been left until next season, as also the fore levelling to 3 new standard bench marks (Gharo, Tatta and Jerruck) still under construction.

The instruments used were :-level Zeiss No. 3488 ; stares Nos. 19 A and 19 B and tape No. 4.

The back levelling of the portion between Jacobābäd and Bahāwalpur in 1922-24 was found to require some revision, in order to satisfy high precision requirements; this was also done by $\mathrm{N}_{0} .+$ detachment. The probable accidental and systematic errors of the completed portion of this line (Kotri to Bahāwalpur) are wron $\pm 0.003938 \mathrm{ft}$. and $\pm 0.00039 \mathrm{ft}$. per mile.
225.

Fore levelling of line 101 A

Line 101 A .-The fore levelling was done by No. 2 detachment (Mr. A. A.S. Matlub Ahmad). Work commenced at Sukkur in 29th October 1924 and the line was closed at Hyderābād on 3 rl January 1925. The detachment then began work on line 150. The back levelling (No. 4 detachment Mr. Jiya Laỉ Sahgal), began at Hyderabad on 24 th January 1925 and closed at Sukkur on llth April 1925.

It had been intended to base this line on Pohri, but there was a lack of suitable bench marks there. The joute lay along that of old line 52 , but the old bench marks were forind to have nearly all been destroyed or disturbed. However there woje enough undistur-
bed to justify the new work being adjusted to them. The closing on the old net discloses that there is an error in the new levelling of orer one foot.
"Where the new work disagrees with the published difference between bench marks, the new bench marks have been given provisional values only ; elsewhere the new levelling is good revision work."

The difference of heights between the ends of the line is computed at-160.925 feet; the difference arrived at in the adjustment of the old net was $-159 \cdot 702$ feet, a discrepancy of $+1 \cdot 223$ feet. The probable accidental and systematic errors of the new line, from Lallemand's internal evidence formule are $\pm 0.00371 \mathrm{ft}$. . and $\pm 0.00062$ feet per mile which satisfy the requirements of high precision levelling $\pm 0 \cdot 00416 \mathrm{ft}$. and $\pm 0 \cdot 00106 \mathrm{ft}$. respectively.

The instruments used were:-fore level Zeiss No. 3342, staves Nos. 20A and 20 B, standard steel tape No. 3, back level Zeiss No. 3488 staves Nos. 19 A and 19 B and standard steel tape No. 4.

Line No. 102 :-The back levelling of this line was left incomplete (vide § 189) and the remaining portion was levelled by No. 4 detachment (Mr. Jiya Lal Sahgal). Work commenced at Govardhanla on 31st 0 ctober and closed on 30th November 1924. The detachment next proceeded to Karächi to take up line 101. The mark at Mithra on which it was hoped to close, was found to be disturbed, so work had to be carried on to Bhutta Sheikh,-a total distance of 86 miles.

The probable accidental and systematic errors for line 102, from Lallemand's formule, are $\pm 0.00413 \mathrm{ft}$, and $\pm 0.00018 \mathrm{ft}$. per mile (satisfying the requirements of high precision work $\pm 0.00416 \mathrm{ft} . \pm 0.00106 \mathrm{ft}$. respectively).

The instruments used were:-level Zeiss No. 3488; staves Nos. 19 A and 19 B and standard steel tape No. 4.

Line 105 -As indicated in $\$ 189$. No. 4 detachment carried out the relevelment of short lengths, which completes the line 105.

The table showing the probable accidental and systematic errors for the whole line is given below:-

Line	I'robable accidental etror	Prolable systematic ertor
Portion Khānpur to Bnhawâlpur   " Multīn to Jhang-Maghinma	$\begin{gathered} \text { fect } \\ \pm 0 \cdot 10343 \\ \pm 0 \cdot 00416 \end{gathered}$	$\begin{gathered} \text { feel } \\ \pm 0 \cdot 00008 \\ \pm 0.00042 \end{gathered}$

## 226.

 Instruments used.227. Back levelling of line 102.
228. 

Instruments used
229.

Probable accidental and systematic errors.
229. (Contd.)
230. Line 121.
231. Instruments used.

- 232. Fore levelling of lines 121 A and 160 .

233. 

Fore levalling of line 151 .
which satisfy the requirements for high precision levelling $\pm 0.00416 \mathrm{ft}$. and $\pm 0.00106 \mathrm{ft}$. respectively.

Line No. 121.-The fore levelling of the portion from Hommh to Jaleswar was carried out by No. 3 detachment (Mr.H.C. Banerjea, в.土.). Work commenced at Howrah on 6th Norember 1924, and closed at Jaleswar on 1st January 1925, when the detachment returned to Midnapore to take up line 121 A.

The instruments used were:-level Zeiss No. 16215; stares Nos. 16 A , and 16 B and standard steel tape No. 7.

The fore levelling to new standard bench marks under cons. truction was left for 1925-26.

Line 121 A.-The fore levelling of the line from Mohanpur (Midnapore) to Rānīganj was done by No. 3 detachment. Work commenced at Midnapore on 7th January 1925, and closed at Räniganj on 13th February 1925, the detachment then proceeded along line 151. The new standard bench marks under construction were left for 1925-26.

The fore levelling of line 150 was all done this season. From Kotri to Hyderābād, by No. 4 detachment (Mr. Jiya Lal Sahgal), and from Hyderābād to Barmer by No. 2 detachment (Mr. A. A.S. Matlub Ahmad). This detachment commenced worl at Hyderibid on 4th January 1925, and closed at Barmer on 3rd April 1925.

Instruments used were the same as those for lines 101 A and 102.

Line 151.-All the fore levelling of this line from Raniganj to Dinājpur was done this season by No. 3 detachment except for the connection of new standard bench marks under construction, and for the Ganges crossing at Lālgolā Ghāt, which was recomnoitred for 1925-26. The detachment closed work for the season at Dinijipur on 15th May 1925.

Check levelling at Rangoon and Pegu.-This was carried not by No. 1 detachment, by means of simultaneous double levelling of precision, during the course of the secondary levelling on the Insein and Pegu lines. Some of the Rangoon bunch marks were suspectel by the Port authorities to have been altered in hoight, an earthpate in 1919 being thought to have affected them. This present seasen's levelling indicates that some of the heights have altered with reference to those of standard bench mark in cantonment gardens, Rangoon (B.M. 32/94 D), of the Shwedagon Pagroda mark (B.M.31) 94 D ), and 9 others which agree inter $s e$, as is shown in the follor. ing table.

## Check levelling at Rangoon

	Brief description of bench mark	New height above ( + ) or below (-) Shwedagon	Height as previoualy determined	$\left\{\begin{array}{c} \text { Risen }(+) \\ \text { or sunk } \\ (-) \text { since } \\ \text { Iast } \\ \text { levelling } \end{array}\right.$
31	$\uparrow$ on slab on E. side of Shwedagon Fagoda BOM. steps, Rangoon 108	feet $0 \cdot 000$	feet $0 \cdot 000$	$\begin{aligned} & \text { jeet } \\ & 0.000 \end{aligned}$
32	Standard bench mark on high knoll in Cantonment Gardens, Rangoon	+ 0.393	$+0.393$	$0 \cdot 000$
88	(i.'I'S. at NIE. angle of Railway Audit Offices, Rangoon. A few inches below ground level	$-78 \cdot 746$	$-78 \cdot 746$	$0 \cdot 000$
29	O at NE. corner of plinth of Railway B.M. Audit Ollices, Rangoon	$-77 \cdot 523$	$-77 \cdot 523$	$0 \cdot 000$
27	G.T.S, at S. end of step of E. entrance to baseO ment of Sule Pagoda, Kangoon .. B. M.	$-89 \cdot 150$	$-89 \cdot 150$	$0 \cdot 000$
26	$\uparrow$ on stone block under portico of S . B. M. entrance of Town Hall, Rangoon 31	-90.641	$-90 \cdot 641$	$0 \cdot 000$
17	Standard bench mark in Customs House flagstaff enclosare, langoon	-88.994	-88.994	$0 \cdot 000$
16	G.T.S. at W. end of step of E. entrance of Gene0 B.M. ral Post Office, Rangoon	-92.040	-92.040	$0 \cdot 000$
21	Zern end of bed plate of tide gauge at Rangoon 'lidal Observatory	$-88 \cdot 433$	$-88 \cdot 433$	$0 \cdot 000$
7	G.TS. nt N.E corner of northernmost of 3 O pagodas at Dala village B.M.	-92.574	$-92 \cdot 574$	$0 \cdot 000$
53	G.T.S. al. P.W.D. Inspection bungalow, Seikgyi, B. M. $1 \frac{1}{2}$ feet below ground level	$-97 \cdot 612$	$-97 \cdot 612$	$0 \cdot 000$
70 (54)	$\uparrow$ on N . parapet of cliain at junction of B.M. Simpson and Shwedagon Pagoda 111 roads, Rangoon	$-50 \cdot 973$	$-50 \cdot 881$	-0.092
71 (30)	$\uparrow$ on W. parapet of drain 230 feet $S$. of B.M. entrance gate of Presbyterian Church, 66 Rangoon	$-67 \cdot 216$	$-67 \cdot 253$	+ 0.037
72 (22)	$\uparrow$ at base of palisado fonce $\mathbb{I}$. of gateway B.M. of Crisp Street Jetty, Rangoon ... 169	-91.978	$-91 \cdot 847$	$-0.131$
73 (24)	$\uparrow$ at base of palisade fence, at its W. encl. B.M. N. of S. and T. Corps Wharf on Strand 168 road, Rangoon	-91-582	-91 525	-0.057

Check levelling at Rangoon.-(Concld.)

	Brief description of bench mark	New beight above $(+)$ or below (-) Shweda- gon	Height as previously determined	Risen $4+$ or sunt (-) sicice last levelling
74	B.M. on W. end of N. entrance of Examina tion Hall at Port Health Station, at Brooking Strect Whart, langoon ..	$\left\lvert\, \begin{gathered} \text { fect } \\ -93 \cdot 043 \end{gathered}\right.$	feet.   new bea	feel mark
75 (18)	Graham Smith's bench mark ontaide SE. corner of enolosure of Mayo Marine Institute, Kangoon	$-92 \cdot 590$	-92.608.	+0.018
76 (20)	B○M, at SW. corner of shed of Brooking Street Wharf waiting room for Indians, Kangoon	-91-46L	-91.449	-0.112
77 (19)	BOM.at NW. corner of shed of Brooking Strect Wharf waiting room for Europeans, Rangoon	$-91 \cdot 490$	$-91.508$	$+11.115$
78 (8)	G.T.S. at SE. corner of northernmost of 3 ○ Pagodas at Dala village B.M.	$-92 \cdot 014$	$-92 \cdot 851$	-0.063
79 (9)	B.M. on iron pillar 77 feet of I, eigangyaung $\downarrow$ Pagoda at Dala village	$-96 \cdot 149$	$-96 \cdot 17^{0}$	+0.021

234. (Contd.)
235. 

Triangula. tion stations.
236. Relevelments.

At Pegu the check was desired on account of a report from the local P.W.D. Officer in 1924 , that the standard bench mark appared to have changed its height. The new levelling indicates that of 13 bench marks checked, the standard and two other marks hare kept their relative heights; one has risen 0.143 ft ., and nine have sunk. Of these, five are at the railway station, and the sinking varies from 0.280 ft . to 0.067 ft . (average 0.177 ); one on a railway bridge over a mile away has sunk 0.053 feet. The remaining three hare sunk comparatively little; they are not near the railway:

$$
\begin{array}{lll}
\text { Interred at Thanatpin } & 0.020 \mathrm{ft} . \\
\text { On a massive building } & 0.016 \mathrm{"} \\
\text { On a road culvert } & 0.005 \text { ", }
\end{array}
$$

The triangulation stations connected by all detachments are shewn in Table No. XIII.

Relevelments.-The back levelling run this season was only ${ }^{24}+$ miles; the percentage of relevelment was albout $1.5 \%$. This better. ment may be due to the interval of time between fore and back being short (about 6 months).

Standard bench marks have been built or are under construction, at Howrah (two), Midnapore, Bānkurā, Rānīganj and Berhampore (Bengal).

Standard bench marks of the new type referred to in § 205, have been built or are under construction at the following places:Gharo, Tatta, Jerruck, on line 101 between Karāchi and Kotri. Mirpur Khās, Chhor, Gadra road, Barmer, on line 150.
Ulūbäria, Panskura, Belda, Jaleswar, on line 121.
Bishnupur, on line 121A.
Sainthia, Kāndi, Lālgolā Ghāt, Godāgāri Ghāt, Nachoul, Sapahar, Bālurghāt, Kumārganj, on line 151.

Chānditala, Arämbāgh in Hoogly district for future connection.
This new type consists of a Chunār sand stone dressed monolith 1 foot square at base and 3 feet high, the upper 3 inches being dressed to the form of a frustum of a pyramid terminating in a smooth square of about 3 -inch side. The stone rests on a bed of concrete 5 feet square and 3 feet deep, the upper surface of stone being 1 foot above ground level. It is surrounded by a masonry wall $j$ feet square (outside), 1 foot thick and $2 \frac{1}{2}$ feet high. It includes two subsidiary marks on either side of the monolith consisting of hard stone prisms 8 inches long and 3 inches square, their smooth tops flush with the surface, near the edges of the concrete bed protected by bricks or stone slabs, and a stout iron bolt 1 inch square and 8 inches long built horizontally into the masonry wall and projecting about 2 inches out of it. The inner enclosure is filled in with rubble to a height of about 6 inches above the top surface of the monolith, and the rest with earth.

At Gharo, Tatta, Jerruck, Mīrpur lhhās, Chhor, Gadra road and Barmer, there has been substituted for the sand stone monolith a fine cement concrete pillar, with a large flat headed copper bolt sunk in the top. All the standards listed above will be connected in 1925-26. The standard bench mark at Bahāwalpur has been moved to a more accessible place, and will be comected in 1925-26.

The monoliths of the standard bench marks at Khänpur and Burdwãn not having been originally built of the best stone, hove weathered badly. Only Chunār sand stone or grood white Jhelum stone, as used for the Bahàwalpur standard, should be used in future unless the expense is prohibitive. The subsidiary marks should also be of the hardest stone. The interred bench marks connected during the last few years have been called embedded. The original distinction as in G.T.S. Vol. XIX has now been reverted to.

An examination of the records of primary levelling from 1910-11
238.

New type of bench marks described
238. to 1923-24 inclusive, shows that 684 new bench marks classed as (Contd) secondary were called "embedded" in error; they are "interred", types A and B. Also 46 old bench marks of these types have been called secondary.

## 239. The following manuscripts were sent to the press:Publications. Levelling Pamphlet for sheet No. 44.

Line	In degree sheet	Line	In degree bliet
$\begin{array}{ll}\text { Gooty to Ongole } & \ldots \\ \text { Nandyāl to Atmākūr } & \text {... }\end{array}$	57 E.I. M. and 66 A . 57 I.	Branch line to Asansol \& Churūliu railway stn.	$731 \& 1$.
		Barākar to Hazāribāgh road railway stn.	
Nandyāl to Atmākūr Ahmadnagar to Dhond	47 I . and J.		72 B. \& 73 I.
Viramgām to Nakhtrãna Mota	$\begin{aligned} & 41 \text { E. F.I.J. M. } \\ & \text { N. and } 46 \mathrm{~A} . \end{aligned}$	BURMA	
Khānpor to Mārwār Pāli	$39 \mathrm{~L} .40 \mathrm{I} . \mathrm{J} . \mathrm{M}$	Nyaungzuye to Kandin	$85 \mathrm{~N}, 10.8 \mathrm{P}$.
	N. \& O., and $45 \mathrm{C} . \dot{\mathrm{G}}$.	Mau-bin to Bassein Sagamya to Pantanaw	$85 \mathrm{~L} . \& \mathrm{P}$.
Jacobābād to Khānpar	39 D. H. \& L., and $40 \mathrm{~A} . \& \mathrm{H}$.	Moulmein to Pa-an Moulmein to Wekali ...	94 H
			94 H
Khānpar to Bahāwalpar Maltān to Jhang (part)..	39 L .80	Ba- Bu kow to Kaw myatkyi	94 Il , d L
	39 N.		
Sukkur to Hyderäbād ...   Dehra to Mãjra	40 A. B. \& C.	Nyaungbinzeik to Natchanng	$\begin{gathered} 94 \mathrm{H}_{1} \& \mathrm{~L}_{1} \\ \text { and } 90 \mathrm{I}_{1} \\ 94 \mathrm{~B}, \& \mathrm{C} . \end{gathered}$
	53 J .		
Calcutta to Nārāyanpur Nãrãyanpur to Nārāyan.	79 B.		
par	79 B		$\begin{aligned} & 94 \mathrm{C} . \\ & 93 \mathrm{c} . \end{aligned}$
Howrah to Uttarpāra ...	79 B	Dalanun to Pazun marausg	
Baidyabāti to Sheorāphúli   ...	79 B	ligaukse to Minza Ywakainggyi to Amarapura	$93 \text { C. } 840 \text {. }$
Branch line to Bāndel railway station	79 B.		93 B
., Pandua ${ }^{\text {Saktigarh ", .. }}$			$\begin{array}{r} 840 \\ \mathrm{nn} \end{array}$
". Burdwã"	$73 \mathrm{M}$		. $84 . \mathrm{M}$,
, Khinna \& Galsi	73 M.73 M.	T'ungôn to Shweloo Kabo to Myittaw	$\begin{aligned} & 84 \\ & 84 \end{aligned}$
,Mānkar ",		Kabo to Myittaw Okshitkan to Puokkan Thonze to Kangoon	
" Dāngar "   ", Dargapar .,	73 M. 73 M.	Thonze to Kangoon	85
", Rã̆ıignnj ".	$\begin{aligned} & 73 \mathrm{M} . \\ & 73 \mathrm{M} . \end{aligned}$	Pegu to Zenynungbin Myitkyo to Okpo R.D. 25 of Yenwe embankment to Uaw ...	$94 \mathrm{C}$.
, Kālipăāri			
railway stn.	73 M .		94 C.

The arrears of publication are :-
Manmād to Ahmadnagar, 1921-22 (requires check lerelling near Nändgaon, which is in the programme for 1926-27).

Surat-Dhūlia - awaits back levelling which is in the program. me for 1926-27.
Branch line at Anjār (Cutch), awaits relevelling in 1926-27.
Sind secondary levelling, 1922-23; awaits completion of line 150 next season.

Bāgalkot-Bijāpur 1914-15; requires revision of line Belgant Bāgalkot (1910-11).

* Secondary.
TABLE X.-Tabular statement of outhurn of teork, season 1924-25-(iontul)


TABLE X.-Tabular statement of outturn of work, season 1924-25-(Contd.)

TABLE X.- Tabular statemeut of outturn of work, season 1924-25-(Contd.)

TABIE X.—Tabular statement of outturn of work, season 1924-25-(Concld.)



## TABLE XI.-CHECK LEVELLING

Discrepancies between the old and new heights of bench marks


TABLE XI.-CHECK LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks


TABLE XI.-CHECK LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks

Dench marks of the original levelling that were conuected for check levelling				Observed height nbove ( + ) or below ( - ) starting bench mark as determined by			
	$\left\lvert\, \begin{aligned} & \text { Degree } \\ & \text { Bleet } \end{aligned}\right.$	Description		Original levelling		Check   levelling $1024-25$	
dt Pegu							
			mile	feet	date	feet	feet
$\left(\left.\begin{array}{r} 40 \\ 33 \\ 100 \\ 34 \\ 36 \\ 37 \\ 101 \end{array} \right\rvert\,\right.$	$94 . \mathrm{C}$   $"$   $\cdots$   $"$   $"$   $"$		2.4 0.0 0.9 1.4 6.8 6.8 7.0	+9.952 $+\quad 1.073$ +15.712 +24.001 -8.569 -10.535 -13.422	1909-10 1912̈-13 $1909-10$ $\vdots$ $1912 \mathrm{C}-13$	+9.898 $+\quad 1.068$ +15.686 +24.132 -8.614 -10.595 -13.463	$\begin{aligned} & -0.054 \\ & -0.005 \\ & -0.026 \\ & +0.031 \\ & -0.045 \\ & -0.060 \\ & -0.041 \end{aligned}$
At Myitkyo							
111	$9 \pm$ C $\ldots$	E B.M. at Myitkjo lock ... G.T.S. O. B.M.	0.0 0.1	0.000 -1.709	1912-13 -14 $"$	0.000 -1.678	0.000 +0.031
At R, D. 25 of Yenwe embankment							
1170	94 C	$\underset{\substack{\text { E.B.M. at R. } \\ \text { Iron plug }}}{ }$		$\begin{array}{r}0.000 \\ +3.109 \\ \hline\end{array}$	1923-24 .	0.000 $+\quad 3 \cdot 107$	$\begin{array}{r}0.000 \\ -0.002 \\ \hline\end{array}$
Between Dala and Seikgyi							
7 8 9 3	91 D   .   .   .	G.T.S.   O 2 on N. pagoda ... B. M.   G.T.S. $\mathrm{O}$   1   B. M. on iron pillar   E.B.M. at Seikeri	0.0 0.0 0.2 $\mathbf{0 . 7}$	$\left\|\begin{array}{r} 0.000 \\ - \\ -0.277 \\ -3.596 \\ - \\ -3.038 \end{array}\right\|$	1892.93 $"$	$\begin{array}{r}0.000 \\ -0.339 \\ -3.574 \\ -5.031 \\ \hline\end{array}$	(0.000   -0.162   +0.022   +0.007
At Sukhur							
	10. ${ }^{\text {a }}$	S.B.M.   Step of Municipal   reservoir   at   Church or England , ...	$\begin{aligned} & 0.00 \\ & 0.13 \\ & 0.62 \end{aligned}$		$\begin{array}{\|c} 1904-06 \\ 1921-24 \\ 1904-06 \end{array}$	0.000 $-35 \cdot 87 \pi$ -26.887	$\left\|\begin{array}{r} 0.000 \\ -0.022 \\ -0.001 \end{array}\right\|$

## TABLE XI.-CHECK LEVELLING-(Contd.)

 Discrepancies between the old and new heights of bench marks| Hench marks of the original levelling that were connected for check levelling |  |  |  | Observed heiglit above ( + ) or below ( - ) starting beuch marl as determined by |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Degree sheet | Description |  | Original levelling |  | Cheek levelling $1924-25$ |  |
| At Sukkur |  |  |  |  |  |  |  |
|  |  |  | miles | feet | date | milos | feet |
|  | 40 A | Bridge near Municipal |  |  |  |  |  |
| (48) |  | office, Sakkar | 0.64 |  | 1904.06 | $-17 \cdot 187$ | +0.001 |
| $\begin{aligned} & 48) \\ & 250 \end{aligned}$ | ., | Railway Institute " | 1.02 | $-19 \cdot 427$ | 1921-24 | $-19.439$ | -0.012 |
| $\left\|\begin{array}{c} (+9) \\ 249 \end{array}\right\|$ |  | Traveller's Bungalow | $1 \cdot 10$ | $-13 \cdot 619$ |  | -13630 | -0.011 |
| 100 |  | Rock cut B.M. (Type C) , | $1 \cdot 35$ | + 1.236 | 1904-06 | + 1.235 | -0 001 |
| At Hyderābād |  |  |  |  |  |  |  |
| 161 | 40 C | S.B.M. at Hyderñbäd ... | 0.00 | 0.000 | 1904.06 | 0.000 | 0.000 |
| 155 | ., | Civil Hospital. Hyderābād | 1.35 | $+19 \cdot 177$ | " | +19.200 | +0.0.3 |
| 156 | , | Metho Rām's Hall ., ... | $1 \cdot 35$ | $+19 \cdot 560$ | , | + 19. 561 | +0 001 |
| 154 | " | Training College $\quad$-.. | $1 \cdot 35$ | + $21 \cdot 271$ | " | + 21.280 | +0.009 |
| 160 | ,. | st. Thomas' Charch "... | 0.03 | $+0.625$ |  | $+0.624$ | -0.001 |
| 159 | " | 'Travellers bungalow ,. ... | 0.42 | - 0.542 |  | - 0.548 | -0.006 |
| 31 | " | Kachahri ${ }_{\text {Sabordinate }}$ Judge's ... | 0.57 | $+7.864$ |  | + 7.852 | 0.012 |
| 158 |  | Stubordinate Judges ${ }^{\text {Coart }}$ ", ... | $0 \cdot 72$ | $-10 \cdot 272$ |  | -10.280 | -0.009 |
| 157 |  | N. V. High School $\quad$, ... | $0 \cdot 78$ | - 5347 |  | - 5361 | -0.014 |
| At Barmer |  |  |  |  |  |  |  |
| 23 | 400 | Rock cut B. M. (type C) |  |  |  |  |  |
|  |  | Barmer ... | $0 \cdot 00$ | 0.000 | 1921.25 | 0.000 | 0.000 |
| 8 | ', | Ry. Rest house Barmer | $1 \cdot 29$ | -. $41 \cdot 068$ | ,. | -41.078 | -0.010 |
| 9 | , | Ry. station , | $1 \cdot 50$ | - $40 \cdot 000$ | " | -40.012 | -0.012 |
| 10 | , | Sub post office ", | $1 \cdot 54$ | -41.370 | ", | -41.38. | -0.012 -0011 |
| 11 |  | Hem Sarai | 1-86 | $-20.464$ |  | - 20.475 | -0.017 -0.017 |
| 12 |  |  | $1 \cdot 90$ | -18.274 |  | -18.291 | -0.007 |
| 13 | . | Seth Kanni Rām house ,", | $1 \cdot 94$ | - 13.791 | , | $-13.796$ | -0.100 -0.009 |
| 14 | , | Police station | 200 | - 13.030 |  | -13.039 | - 0.007 <br> -0.011 |
| 15 | $\cdots$ | Ciril Dispeasary | $2 \cdot 0$ a | - $9 \cdot 295$ |  | - 9.306 | -0.011 +0010 |
| 16 | , | Court home | $2 \cdot 10$ | - 6.350 |  | - $6 \cdot 340$ | +0.10 +0.012 |
| 17 | ,. | Entrance | 2-12 | - 6. 4.12 | , | - 6.440 | +0.012 +0.016 |
| 18 | , | A.V. School | $2 \cdot 16$ | - $5 \cdot 391$ |  | -6.575 $+\quad 0.381$ | +0.018 |
| 19 |  | Seth Rãm lal's house | $2 \cdot 21$ | + 0.367 |  | + 0.381 | +0.009 |
| 20 | " | Granesh Mal's | $2 \cdot 25$ | + 4.702 |  | a +4.710 +1447 | +0.601 +0.001 |
| 21 | , | Seth Brijlāl's | 2.30 | +1.443 +2.913 |  | 14.441 $+\quad 2.903$ | +0.010 |
| 22 | " | Bälkishan's Sarai | $2 \cdot 36$ | $-2.913$ |  | - $2 \cdot 903$ | +0.0. |

## TABLE XI.-CHECK LEVELLING-(Contd.)

Discrepancies between the old and new heights of bench marks


## TABLE XI.-CHECK LEVELLING—(Contd.)

Discrepancies between the old and new heights of bench marks

Beucb marks of the original levelling that were connected for check levelling			Distance from startingbench mark	Observed height above ( + ) or below ( - ) starting bench mark as determined by			
No.	$\begin{array}{\|l} \text { Degree } \\ \text { sheet } \end{array}$	Description		Original levelling levelling		$\begin{gathered} \text { Check } \\ \text { levelling } \\ 1924-25 \end{gathered}$	
At Berhampur							
			miles	feet	date	feet	fet
30	78 D	Type B ...	0.0	$0 \cdot 000$	1920-21	0.000	0.000
29		At E. E's office verandah	0.0	+ $3 \cdot 482$	,"	+3.480	-0.002
41	.,	At Collector's Court ...	$0 \cdot 1$	+ 5.222		+ $5 \cdot 195$	-0.027
43	.,	At club	0.5	+ 2.867	",	+ 2.869	$+0.001$
42	.,	At church	$0 \cdot 6$	+ $3 \cdot 750$	",	+ 3.697	-0.003
At Godägüri							
127	78 D	Type B ...	0.0	0.000	1920-21	$0 \cdot 000$	0.000
126	,	At Railway station ...	$0 \cdot 3$	+ 4.960	,	+ 4.940	-0.000
$\begin{aligned} & 125 \\ & 158 \end{aligned}$	",	On brilge No. 2 On culvert		$+\quad 4.727$ $+\quad 2.747$	."	+4.717 +2.712	- $\begin{aligned} & -0.010 \\ & -0.0075\end{aligned}$
129	"	At I. B.	1.6	+   +   +  	",	+ $5 \cdot 344$	+0.023
At Dinajpur							
78	78 C	On Memorial pillar ...	0.0	$0 \cdot 000$	1899.1000   $\$ 1909$	0.000	m
77	"	Standurd bench mark ...	0.2	- 2.884	\& 1003	- $2 \cdot 894$	-0.010
76	..	At Kachnhri $\quad .$.	$0 \cdot 4$	+ $2 \cdot 331$		+ $2 \cdot 335$	+0.04
41	,"	Railway bridge No. 28 ...	0.7	- $2 \cdot 438$	"	- $2 \cdot 416$	+11020
42	",	Emberided	0.7	- $1 \cdot 312$	".	- 1.310	+0.002
43	"	Railway bridge No. 30 E. abutment.	$1 \cdot 4$	+ 8.294		+ 8.317	+0.023
44		Railway bridge No. $30 \mathrm{~W} . \mathrm{C}$.	1.5	+   +8.203	",	+ 8.228	+0.0.38
46	"	Railway britge No. $35 . .$.	3.7	+8.234	'"'	- $9 \cdot 206$	+0-128
At Kotri							
213	40 C	District bungalow Kotri ...					$0 \cdot 100$
39		Water ganye Indus ,, ...	0.1	- 0.258	1904-0 ${ }^{6}$	-0.241	-0
214 (38)	"	Zero of Kotri gange ,	0.2	+ 0.332	1920-21	+0.334	+0.00
215		Near Flotilla office , ...					-0.003
(35)	"	Near Flotilla office ,, ...		$-1.063$	"	- 1.048	-0
210	"	(Type B) bench mark , ...		- 3.763	"	- 3.729	-

TABLE XI-CHECK LEVELLING—(Contd.)
Discrepancies between the old and new heights of bench marks


TABLE XI-CHECK LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks


* Branch line No. 57L Dīngarb to Khãopur.

TABLE XI.-CHECK LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks


[^22]TABLE XI.—CHECK LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks


## TABLE XI.-CHECK LEVELLING - (Contd.)

Discrepancies between the old and new heights of bench marks

Bencl marks of the original levelling that were connected for check levelling				Observed height above ( + ) or below (-) starting bench mark as determined by			Difference (check original). The sign + denotes that the height was greater and the sign-less than when originully levelled
No.	Degree sheet	Description		$\underset{\substack{\text { Original } \\ \text { levelling }}}{\text { a }}$		Check leveliing 1924.25	
At Pandua							
$\left(\left.\begin{array}{l} 118 \\ 119 \\ 121 \end{array} \right\rvert\,\right.$			miles	feet	date	feet	teet
	79 A	B OM. on R. B. pillar ..	$0 \cdot 00$	0.000	1916-17	$0 \cdot 000$	$0.000 \dagger$
	,	B.OM. ., ., ...	$0 \cdot 51$	$-1.730$	,.	- 1.799	--0.069
	"	B.M. on Culvert	1.71	- 4.016	"	- 4.074	$-0.058$
At Saktigarh							
'126	73 M	G.T.S.	$0 \cdot 00$	0000	1916-17	0.000	$0 \cdot 000$
129		$\begin{gathered} \text { G.T.S. } \\ \mathrm{O} \end{gathered}$	$0 \cdot 23$	$+4 \cdot 262$		+ 4.280	+0.018 $\dagger$
	"	B.OM. at pillar	$0 \cdot 86$	- 4.551	,	- $4 \cdot 549$	+0.002
At Burdwãn							
116	$73 \mathrm{M}$	E.B.M. at Burdwña	0.00	0.000$+\quad 5 \cdot 117$	1916-17	0.000$+\quad 5.079$	$\left\|\begin{array}{r} 0.000 \\ -0.038+ \end{array}\right\|$
115		$\begin{aligned} & \text { S.B.M. } \quad " \\ & \text { B.D.B.M. } \end{aligned}$	0.03		'		
114			$0 \cdot 16$	+ 5.335	,.	$+5 \cdot 332$	$-0.003$
113	"	$\begin{aligned} & 100 \cdot 90 \\ & \text { B.L.B.M. } \\ & \mathrm{O} \\ & 100 \cdot 18 \quad, \quad \ldots \end{aligned}$					
	$\cdots$		0.70	+ 3.053	"	$+3.915$	-0.038 $\dagger$
112	"	GT.S.   O at bridge   B. M.	1.08	$+3 \cdot 865$	,	+ $3 \cdot 870$	+0.005

$\dagger$ Revised height by levelling of 1924-25.

TABLE Xi.-CHECK LEVELLING—(Contd.)
Discrepancies between the old and new heights of bench marks

$\dagger$ Kevised height by levelling of 1924-25.

## TABLE XI.-CHECK LEVELLING-(Contd.)

Discrepancies between the old and new heights of bench marks


* Revised height by levelling of 1924-2i
$\dagger$ 'lbe old bench marks are not adjusted as they will receivo values from net leselling of $1921-25$ and 192j-26.

TABLE XI.-CHECK LEVELLING—(Concld.)
Discrepancies between the old and new heights of bench marks

Bench marks of the original levelling that were conaected for check levelling			Distance from startingbeach mark	Observed height above ( + ) or below ( -1 starting bench mark as determined by			
	Negree sheet	Description		Original levelling		Check   levelling 1924-25	
At Asansol							
			miles	feet	date	feet	feet
77	73 I	G.T.S.					
		O on culvert B.M.	$1 \cdot 38$	+ 9.582	$1916-17$	$+9 \cdot 560$	-0.022
76	$\cdots$	B.OM. on well	1.76	$+30 \cdot 741$		+ 30.789	+0.018H
		O. at lamp post B.	2-23	+ $33 \cdot 498$		+ $33 \cdot 526$	$+0.028$
dt Barālear							
49	73 I	G:T.S.0B.M.					
			$0 \cdot 00$	$0 \cdot 000$	$1914-15 \&$ $196-17$	$0 \cdot 000$	0.000
50	"	G.T.S.	$0 \cdot 45$	- 4.513		- 4.523	-0.010
		B.M. " "		4.513	"		
51	''	E.B.M. at Barākar	0.58	- 7.546	,	- 7'55I	$-0 \cdot 000^{4}$
$\begin{aligned} & 52 \\ & 54 \end{aligned}$	,	+ on pillar C.T.S.	$0 \cdot 60$	- 1.0529	,	- 1.556	-0.024
		${ }_{\text {B.M. }}^{\text {O, }}$, on briclge	$0 \cdot 88$	- 0.419		- 0.42j	$-0.006$
At Hazūribügh Road							
66	72 H	G.T.S.					
		O on rock in sitū B. M.	000	$0 \cdot 000$	101 1-15 \&	$0 \cdot 000$	0.000
$6 \overline{0}$	"	Q.T.s.	$0 \cdot 01$	$-24 \cdot 360$	..	$-24.359$	+0.001
		B.M.	0.01	-21.301	,		
64	"	Q.T.S. 0 on rock in sitū ...	$0 \cdot 01$	+18.911	"	+18.910	0.001
63	"	B.M. E.B.M. at M.S. 220 ..	0.02	$+37 \cdot 255$	,	+37 252	-0 003

$\dagger$ Revised value by levelling of 1924.25 .
E. B. M. - Embedded bench mark. S. B. M. = Standard bench mark.
I. B. M. = Interred bench mark.

## TABLE XII.-REVISION LEVELLING

Discrepancies between the old, and new heights of bench marks

llench marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights above ( + ) or below ( - ) the starting bench mark			Difference (revision -origi. nel). The sign + denotes that the
	Dersee sheet	Description		From published heights	Date of original levelling	FromRevision1924-25(Undjust.   ed)	and the sign-less in 1A24-25 than when originally levelled
Revision of part of Main line 52 (Sujāwal to Shikārpur							
			miles	feet		feet	feet
1160   54   94   99   47   46   44   43   41   40   36   34   30   29   28   23   23   22   14   10   9   219$\|$	40 A	(Type C) B.M. Sukkur	$0 \cdot 10$	0000	1904-06	$0 \cdot 000$	$0 \cdot 000$
	"	Hailway Pay cierk’s oftice Sukkur			,.	- 56.470	0.017*
	.	Hailway station Sulkur	0.44	- 56.729	,.	- 56.740	$+0.011$
	,.	Platform K. S. .,	$0 \cdot 47$	- ¢0.352		- 50.375	$+0.023$
	,	Bridge No. 349	$1 \cdot 39$	- 34.963	.	- 34.987	+0.025*
	..	E. H.M. at Rohri Jn. IR. S.	$3 \cdot 23$	- 32.368		- 32.457	+0.089*
	.	Bridge No. 180	$4 \cdot 66$	- 54789	"	- 54.840	+0.051*
	"	, 166	$8 \cdot 72$	- $64 \cdot 106$	,	- 6t 193	-0.087*
	,	Pillar near M. P. 291	$10 \cdot 68$	- $63 \cdot 831$	"	- $64 \cdot 156$	+ $0 \cdot 32.5 *$
	-	-." ${ }^{\prime 2} 27$	14.68	- $63 \cdot 896$	:"	- $64 \cdot 233$	+0.337*
	-	Bridge No. 143	$18 \cdot 82$	- 70.468	- ..	- 70.581	+0.113*
	-	Hil . 127 . ${ }^{\text {\% }}$	$22 \cdot 87$	- 78.185	,	- $78 \cdot 297$	+0.112*
	-.	lillar dear M. P. No. 277	24.74	- 74.996	.	- 75.236	+ $0 \cdot 24{ }^{*}$
	-	, ${ }^{\text {, }}$, 275	$26 \cdot 75$	- $76 \cdot 676$	"	- $76 \cdot 236$	+0.160)*
	-	Culvert No. 113	$33 \cdot 61$	- $83 \cdot 440$	,	-83561	+0.121*
	"	Mridge , 111	$34 \cdot 84$	- $80 \cdot 142$		$-80.210$	+0.068*
	.	Culvert ., 97	$43 \cdot 18$	- 92.527	,	- 92.757	+0.230*
	-	82	+7.34	- $95 \cdot 280$	"	- 95.515	+0 235*
	.	Bridge , $\mathbf{7 5}$	4916	$-95 \cdot 788$	,	- 96.054	+ $0 \cdot 266^{*}$
	,	Culvert, 68	5129	- $90 \cdot 260$	,	- $99 \cdot 459$	+ $0 \cdot 199^{*}$
	,	", ,. 62	5341	$-100 \cdot 768$	"	- $101 \cdot 066$	+0.298*
	-	", " 60	$55 \cdot 20$	- $101 \cdot 829$	,	- $102 \cdot 028$	+0 199*
	".	". $\quad 1.47$	5905	-101.210	.,	-101.411	+0.201*
	""	"̈dge " $\quad 31$	61.42	- $105 \cdot 157$	.,	- $105 \cdot 360$	+0.203*
		idge " 33	$66 \cdot 51$	-105 49t	"	- $105 \cdot 747$	0.253*
	40 B	Pillar near T. P.	6820	- $110 \cdot 567$		110.891	+ $0 \cdot 324^{*}$
	'.	Culpert No. 7	76.32	- $118 \cdot 828$	,	$-119 \cdot 333$	$+0 \cdot 605^{*}$
	-	Rridge , 11	78.56	- 114-299	,	- 114.227	$-0.072{ }^{*}$
	"	Rridge No. 7	$80 \cdot 57$	-115•712		- 116.000	+0.298*
		Culvert No. 219	86.76	-122.360		$-122 \cdot 700$	+ $0 \cdot 340 *$
		" , 209	92,38	- 127.089		-127.502	+ $0.413^{*}$
		206	93.34	-12s.22:		- $128 \cdot 668$	+0.413 ${ }^{\prime \prime}$
		204	95.07	- $130 \cdot 880$		$131 \cdot 292$	$+0.412 *$
		Pillar near M. P. 194	11162	- 14.6.734		-147.350	$+0 \cdot 616^{*}$
		" 192	11364	-148.082	"	-148.741	$+0 \cdot 659 *$

[^23]TABLE XII.-REVISION LEVELLING-(Contd.)
Discrepancies between the old and new heights of bench marks

Bench marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, ubove ( + ) or below ( - ) the starting bench mark			
Revision of part of Main line 52 (Sujäwal to Shikärpur)							
			miles	feet		feet	feet
16	40 B	E.B.M. st Nawn̄b Shāh R.S.	$121 \cdot 55$	$-154 \cdot 937$	1904-06	-156.058	+ $1 \cdot 12]^{*}$
8	"	Calvert No. 185 ...	133.38	$-165 \cdot 9+4$	,	- $16 \mathrm{n}^{\circ} \cdot 621$	$+0.677^{4}$
7	..	E.H.M. at Sarhari R.S. ...	$132 \cdot 58$	$-162 \cdot 268$	:,	-163.2:1	+ $0.963^{*}$
5	$\cdots$	Calvert No 180 ...	$134 \cdot 46$	$-168 \cdot 198$	",	- $169 \cdot 074$	+0.8704
2	,	E.B.M. at Lundo R.S. ...	138-94	$-164 \cdot 90 \mathrm{t}$	",	- $165.799^{4}$	+0.888*
$\frac{86}{93}$	400	Shāhdñdpur R.S.	147.72	$-170 \cdot 23 \mathrm{t}$	"	- $171 \cdot 11{ }^{6}$	+0.875
78	$\cdots$	Tando Adam	$159 \cdot 64$	-178.562		$-179 \cdot 593$	+1.031
71	.	Bridge No. 95	$167 \cdot 70$	- 182.666	",	-183.810	$+1 \cdot 1504$
54	"	Frieli canal Bridge $\quad .$.	$192 \cdot 27$	-177.92	",	- $178 \cdot 212$	+1-2:2
1.7	"	N. V. High school Hyderābād	194.21	$-164 \cdot 98$ ?	"	- $166 \cdot 25 i$	+1.298
158	"	Suhordinate Judge's Coort Hyclerãbād	194.27	-169-914		-171.206	+1-292
31	"	Kachahri Hyclerābūd ...	$194 \cdot 42$	$-151 \cdot 778$	1909-10	- $153 \cdot 072$	+1.294
159	"	Traveller's bangalow Hyderinbād	194.57	$-160 \cdot 184$	1904.16	$-161.473$	+1-289
140	$\because$	St. Thoma's charch Hyderābād	194.96	-159.017	,,	- $160 \cdot 301$	+1.294
161	.	S.B.M. Hyderābād ....	194.99	-159.642	",	-160.92	+1283
155	"	Civil hospital Hyderābād	196.35	$-140 \cdot 465$	"	- $141 \cdot 723$	+1.299
1.56	"	Netha liōm's Hall Hyderābād	$196 \cdot 13$	$-140 \cdot 082$	"	-141-362	+1.280
154	"	Training college Hyderābäd	$\mid 196 \cdot 60$	$\|-138 \cdot 371\|$	"	- 139.643	$+0.272$
(011	$4{ }^{11} \mathrm{~A}$	S. B.M. at Sukkur	$0 \cdot 00$	$0 \cdot 000$	1004.006	0.000	0.000
251	"	Step of Manicipal reservinc at Sukkur	$0 \cdot 13$	$\left\|\begin{array}{r} \dagger \\ -35 \cdot 873 \end{array}\right\|$	,.	- 35.886	-0013,
5.3	$\cdots$	Church of England at Sukkar	0.52	- -26.886	"	- 26.896	$+0.010$
50	"	Bridge near Mnuicipal office at Sukkr	0.52	$-17 \cdot 188$		$-17 \cdot 193$	$+0.005$
4 B	"	Railway Institute at Sukknr	1.02	$\|-19 \cdot 436\|$		- 19.443	$+0.007^{\prime}$
49	.	Traveller's bangalow at Sutknr	$1 \cdot 10$	$-13 \cdot 631$	,	- 13.633	+0.0024
100	,	(Type C) B. M, at Sukbur	$1 \cdot 35$	+ 1.236	.	+ 1.232	-0.004

[^24]TABLE XII.-REVISION LEVELLING—(Concld.)
Discrepancies between the old and new heights of bench marks

Bench marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above ( + ) or below ( - ) the starting bench mark			
	Derree sleet	Description		$\underset{\text { prom }}{\substack{\text { Fublished } \\ \text { heights }}}$	$\begin{array}{\|c} \text { Date of } \\ \text { original } \\ \text { levelling } \end{array}$	From Revision 1924-25 (Unadjust- ed)	
Revision of part of branch line 77 M (Berhampore to Tinpāhär)							
			miles	feet		feet	feet
$\begin{aligned} & 30 \\ & 44 \\ & 46 \\ & 47 \\ & 47 \\ & 48 \\ & 49 \\ & 50 \end{aligned}$	78 D	Trpe B. at Berhampore ...	$0 \cdot 0$	$0 \cdot 100$	1520-21	$0 \cdot 000$	0.000
	,	At bridge	0.7	- 2.718		- 2720	$-0.002$
	,	At well	$7 \cdot 0$	+ 8.271	"	+ 8.2ti8	-0.003
	,	At R S. Marshidābãd	8.2	+8544	"	+8.557	+0.013
	"	At Jail	$8 \cdot 6$	+9.497		+9.520 $+\quad 901$	+0.023
	,.	Type B ${ }_{\text {At }}$	$9 \cdot 4$	+ 4.873		+ 4901	$+9.028$
	"	At boarding house Mur-	$9 \cdot 6$	+ $11 \cdot 151$	"	+11.170	+0.019
51	"	At Govt. school Marshidàbīd	9.7	+ 9460		+ 9.487	$+0.027$
60	"	At well, P.W.D. I. B., Jiäganj	14.3	+12.004		+11.981	-0.023
59		Trye B. at Jiâganj ...	$14 \cdot 3$	+ $7 \cdot 259$	,	+ $7 \cdot 248$	-0.011
53	"	At D.B. I.B., ,	15.4	+ 6.359	,.	+6.338	-0.021
5.2	,	At li.s. ${ }^{\text {che }}$	15.7	+ $8 \cdot 489$		- 8.443	- 1.046
54		Type B. at Bhagwãogolī	21.9	+ 8.423	*	8.408 +8 +18.839	-10.015
${ }^{55}$	"	at R.S. .,	$22 \cdot 4$	+18.861	"	+ 18.839	-0.022
56 57 57	"	At liy. culvert	24.4	+ 6.292	,	+ $6 \cdot 309$	+0.017
	.	At R.S. Lílgolō	29.5	$+15.668$	,	+ $15 \cdot 676$	$+0.008$
28	"	Type B	$29 \cdot 6$	+11.00!	"	+ $21 \cdot 032$	+0.031

TABLE XIII.—List of Great Trigonometrical Survey stations connected by spirit levelling, season 1924-25


* Unadjusted single levelling height.

TABLE XIII.-List of Great Trigonometrical Survey stations connected by spirit levelling, season 1924-25-(Concld.)


TABLE XIV.-Results of comparison of staves with standard steel tape No. 2, season 1924-25

Place and date	Difference of length of staves from 10 feet				Remarks
	No. of stafl				
	2313	22B	13A.	13B	
Tangôn 3-11-34	+0.001171	+0.001397	$+0.002480$	-0.001998	clear.
Myittaw 14-11-24	$+0002216$	$+0.002081$	$+0.002106$	$+0 \cdot 002296$	Scatterel clonds.
Maukkyo 24-11-24	$+0.002473$	+0.001998	+0.001838	+0.002075	"
Sadang 6-12-24	+0.002484	+0.002602	$+0 \cdot 001787$	+0.001916	Clear
Sathe 16.12.24	$+0.001704$	$+0.001653$	$+0.001611$	+0.001490	Light scattered clouds aud cool breeze.
$\begin{aligned} & \text { Nyaungbla } \\ & \qquad 26-12 \cdot 24 \end{aligned}$	+0001553	$+0.001337$	+0.001574	+0.001373	Scattered clouds.
Kinu 4-1.25	+0.001865	$+0 \cdot 001486$	+0.001371	-0.0014E6	Cleat.
Okhan 20.4-25	-0.000831	-0.002381	$-0 \cdot 04363$	-0.003327	Scattered cloucs.
Tankkyan 1-5-25	-0.000329	-0.001243	- 0002405	$-0 \cdot 002623$	Clear.
$\begin{array}{r} \text { Ablone(Rangoon) } \\ 14 \cdot 5-25 \end{array}$	+0.000781	-(1.000320	-0.002543	$-10.002854$	scattered doods.
Pegn 25.5-25	+0.00:717	+0.002163	-0 0100870	-0.000589	Drizzling.

TABLE XIV—Results of comparison of staves with standard steel tape No. 3, season 1924-25-(Contd.)

Place and date		Difference of length of staves from 10 feet   No. of staff		Remarks
		20A	20B	
Sukkur	25-10-24	-0.002494	-0.001485	Clear
Khairpur Mî's	5-11-24	-0.002606	-0.00174.6	,
Setharja	15-11-21.	$\cdots 0.003478$	-0.002829	,
Kandiñro Road	19-11-24,	-0.003506	-0.002537	.,
lrant	1-12-24.	-0.003518	-0.003334	,
Nawib Shiōb	8-12-24	-0.003867.	-0.003264	,.
Shähdid	17-12-24	-0.003297	-0.002752	..
Oderolal.	23-12-24	$-0.003510$	-0.002927	"
Hyderābad	3-1-25	$-0 \cdot 003336$	-0.002129	"
Khesano	13-1-25	-0.004021	-0.002598	Clear
Mirpur khis	21-1-25	-0.003995	-0.003180	
lithoro	$31-1.25$	-0.003366	-0.002892	Dusty
Chhor	8-2.25	- $0 \cdot 003852$	-0.003608	Clear
Salu-jo-elataunto	18-2-2.	-0.00428	-0.003888	,'
Jnnabao	27-2-25	-0.005223	-0.001846	,
Gudra lioad	8-3-25	$-0.0052 .7$	-0.001483	.
Rāmsar	15-3-25	$-0.001807$	-0.00\$013	-
Bhachthar	20-3-25	$-0.005926$	- 0.003926	"
Jasai Atimalnıi	25.3-25	-0.005660	-0.004850	"
Atimalani Barmer	$30-3-25$ $2-1-25$	$-0 \cdot 005783$ $-0 \cdot 006070$	-0.004645 -0.005288	",

TABLE XIV.-Results of comparison of staves with standard steel tape No. 7, season 1924-25-(Contd.)

Place and date		Difference staves fr	f length of 10 feet	Remarks
		No. of staff		
		16A	16 B	
Santragachi do.	5-11-24	$\begin{aligned} & -0.003872 \\ & -0.003526 \end{aligned}$	+0.000939	Clear   do. Drizuling
	2-11-24		+0.000929+0.001595	
Ulubāria	20-11-24	-0.001626		
Kola	28-11-21	-0.002043	+0.001913	Light clouds and cool breeze Clear and cool breere
Debra	5-12-24	-0.003205	+0.000917	
Närāyangarh	16-12-24	-0.003573	+0.000485	Clear
Jaleswar	27-12-24	-0.004187	+0.000718	do.
Midnapore	7-1-25	-0.003165	$+0 \cdot 000616$	Scattered clouds and cool breeze
Debra	5-12-24	-0.003205	+0.000917	Clear and coo: breeze
Närāyangarb	16.12-21	-0.0035i3	+0.000485	Clear
Jaleswar	27-12-24	-0.004187	+0.000718	do.
Midnapore	7-1.25	-0.003155	$+0.000616$	Scattered clonds and cool breeze
Garhbeta	17-1-25	-0.001635	-0.000320	
Onda	26-1-25	-0.004695	+0.000201	Clear and high cool beecze
Shali	5-2-25	-0.005\%49	-0.000305	Clear
Ukhra	16-2.25	-0.005762	-0.00025	do.
Shali	5-2-25	-0.005749	$-0.000305$	Clear
Uklira	16-2-25	-0.005762	-0.000254	do.
Chinpai R.s.	25-3-25	-0.008010	-0.001913	Clear and high wind
Sainthia	5-3-25	-0.008441	-0.002539	Clear and breeze
Kandi	15-3-25	-0.00:982	-0.001113	
Jiäganj	27-3-25	-0.007103	-0.001172	Clear and breaze
Godāgãri	5-4-25	- 11.008405	-0.001161	" " high brecze
Parbatipur adda	17-4.25	-0.006009	-0.000312	Light clouds and higb wine Clear and high winl
Sapahar	28-1-25	-0.003057	$+0.001747$	Clear and high winil
Pabiràm	6-5-25	-0.003714	+0.00107.1	Clenr and breeze
Dinajjpar	15.5-25	-0.001607	+0.002296	Clcar and breeze

TABLE XIV.—Results of comparison of staves with standard steel tape No. 4, season 1924-25-(Contd.)

Place and date		Difference stares fr	of length of 10 lect	Remarks
		No. of staft		
		19A	19 B	
Rãmlal-ka-kawa	30-10-24	-0.002141	-0.002537	Clear and cool brecze
	17-11.24	-0.00296?	-0.003619	
Pathãnwäla :,	6-11-24	$\begin{array}{r} 0.003816 \\ -0.003781 \end{array}$	-0.003741	"
Goru Khänpur	23-11.24	$\begin{aligned} & -0.003731 \\ & -0.003319 \end{aligned}$	$-0 \cdot 004028$ $-0.00: 391$	cër
	-30-11-2.4	$-0.003312$	-0.008391 -0.003731	$\underset{\text { Scalterear clouds }}{\text { Clear }}$
Drigh Hoad R.s	15-12.24	-0.003024   - 0.008936	-0.003803	Scaltered clouds
Pipri	20.12.24	$\begin{aligned} & -0 \cdot 002936 \\ & -0 \cdot 00 \cdot 018 \end{aligned}$	-0.003658	$\cdots$
Ouja	28-12.24	-0.003070	-0.0136 14	
Hilaya	$6 \cdot 1.25$	-0.003010	-0.002s ${ }^{\text {a }}$	Clear
Jerruck	12. 1-25	-0.003091	-0.003297	
Kotri	19-1.45	-0.003835	-0.009339	..
Dethà	26-1.23	-0.002870	$-0.002475$	,"
Oderolã	4-2-25	-0.003372	-0.013396	,
Shälıdàlpur	13-2.25	-0.003883	-0.004292	
Sarhari	20-2-25	$\begin{aligned} & -0.0012 .21 \\ & -0.003833 \end{aligned}$	-0.004406	Clondy
Nawāb Shāh	3. 3-25		-0.003 +20	Clear
Daur	10.3-25	-0.003833 -0.004105	-0.003827	
Bliria Roul	19.3.25	-0.001980	-0.004702	Dusty
Malräbpur	27. 3 -25		-0.005378	Clear
Klairpur Mirs	4. 4.25		-0.005.109	Clouls
Rohri	12. 4.25	$\begin{array}{r} -0 \cdot 005300 \\ -0 \cdot 005257 \end{array}$	-0.005118	Clear

TABLE XIV.—Results of comparison of staves with standard steel tape No. 10, season 1921-25-(Concld.)

Place and date	Differenco of length of staves from 10 feet				Remarks
	No. of staff				
	$\mathrm{E}_{1}$	$\mathrm{O}_{1}$	23A	173	
Calcntta 27-1-25	$-0.001707$	$-0.000024$	-0.003445	-0.001972	Clear
Dhapa 6-2.25	$-0.000839$	-0.000131	-0.003369	-0.0018ic	Clear \& high wiad
Bānsra 15-2-25	$0 \cdot 000795$	$0 \cdot 000000$	$-0 \cdot 003240$	$-0.001544$	Clear
Batkhola $25-2-25$	$-0.002837$	$-0.001443$	-0.005188	$-0 \cdot 003029$	"
Uttarbhāg $9-3.25$	-0.001895	$-0.002514$	$-0 \cdot 004870$	-0.002709	"
Calentta 19-3-25	$-0 \cdot 002235$	-0.001710	-0.005412	-0002723	"
Lillooah 31-3-25	$-0.001303$	$-0.001134$	-0.005013	-000284t	Light chuis
Asansol 11-1-25	$-0.002544$	$-0 \cdot 00185 \mathrm{G}$	-0.001019	$-0 \cdot 00 \div 021$	Clcar
Sitãràmpar 13-1.25	-0.002613	$-0 \cdot 001+20$	$-0.005552$	$-0 \cdot 002522$	*
Pradhĩnkbanta 29-4.25	$-0.001 .117$	-0.000176	-0.004170	$-0 \cdot 002341$	"
Gomoh 8-5-25	$-0 \cdot C 03789$	$-0.002443$	-0.006131	$-0.001229$	"
Hazãribñgh Rond 19-5-25	-0.003519	-. 0.002ö69	$-0.007344$	$-0 \cdot 00+164$	Clondr
Bagodar 24-5-25	$-0.002181$	$-0.001165$	$-0.004640$	$-0.00262$	"
Sitārāmpur $3 \cdot 6 \cdot 25$	-0.002011	$-0 \cdot 000926$	$-0.005040$	$-0.001315$	Clondy is raining

## Chapter VI

# THE HEIGHT OF MOUNT EVEREST AND OTHER PEAKS 

A lucture delivered by Dr. J. de Graaff Hunter, m. A., Sc. D., F. [ist. P. at the mecting o the Iutian science Congress at Madras, February 1922.

The problem of determining the heights of great peaks, not readily accessible and in some cases only possible to observe from considerable distances, has a good many difficulties. This certainly holds for Everest, situated as it is at the north boundary of Nepal. Owing to the fact that it is the highest point of the earth, it is of especial interest to fix its height with as much precision as possible. Public interest in the mountain has been enhanced lately by the despatch of an expedition which has made a reconnaissance of the mountain in 192l; and an attempt to reach the summit is to be made in the current year 1922.

Old values of the height of Everest are :-
(a) 29,002 feet. Although the height of the mountain is nearly 1000 leet greater than that of any other known peak, and there is no doubt at all about its pre-eminence in this respect, questions have been raised as to whether 29,002 represents the facts of the case. This value has been given wide publicity, and is the one generally known. The terminal 2 of this figure has often been discussed. Some people imagine that the result is a perfectly accurate one; while others, quite rightly, have conjectured that the 2 might as well be left out, so far as our knowledge can tell. There has been the practical inconvenience that, were the ? omittel, the height would become a round number of 1000 feet; and to some minds this would convey the idea that the precision of the determination was good only to the nearest 1000 feet. This would err more than the view that the height is exactly 29:002 feet as determined in 1852.
(b) In 1907 Colonel Sir Sidney Burrard published the revised ralue of $2!9,141$ feet. As he did not consider that finality had been reached, ho did not advocate the changing of the height on Survey of India maps.

The lifference of these two results is due to a modified treatment of the observations. It is still impossible to be quite definite to the last 10 feet in height. Here I may correct a popular misconception. Some people imane that if a climber could reach the summit, then all doubt as to the height would dispppear. This is bot so. Fiven if he were able to take with him accurate obsecviner in drmente, he would not be able to improve our height value appreciably.

The sereral practical methorls of determining height in use are:-
(1) Observations of barometric pressiare, mhieh includes observations with mereury, aneroid barometers or with hypso-

## 242.

Metheds of de:ern!ining haight.
242.
(Contd.)
(2) Spirit levelling right up to the point.

Observation of the angle of elevation of a point from a station of known height and at a known distance.
243.

Barometric observations.

As regards barometer observations it may be noted that the trans. port of a mercury barometer, and its subsequent setting up have special difficulties. If a portable barometer of the Fortin type is used, in which the mercury is never removed from the glass tube, there is grave danger of the glass breaking in the course of transit, as the result of the jolting of the heavy mercury in the glass. With the class of barometer, typified by the George barometer, the mercury is removed for transit. It is difficult to ensure entire absence of air in the tube, or in the mercury itself. Meteorologists may say that this can be overcome, and no doubt this is the case in some circumstances. These circumstances are not existent at the end of a very strenuous climb.

The aneroid barometer avoids these difficulties. But anfortunately no aneroid has yet been made that has any pretence to accuracy when subjected to the variations entailed by a climbing expedition Mountaineers frequently forget this.

The hypsometer is an instrument by which measurements of the temperature of steam are made. This temperature depends on the atmospheric pressure, and gives a grood retermination of the pressure. In my opinion it is by far the best of the instruments for pressure determination, which are available to the mountaineer.

Having obtained the air pressure at the point, as well as a simultaneous value of the pressure at some station of known height; and further the air temperature at both places, the formula of Laplace serves to find the height difference. This formula, however, is based on the assumption that the mean temperature of the air column between the two points is the mean of the two terminal temperaturs. The accuracy of this assumption is likely to be the better when the two points are not very distant from one another. Even if there is a clear line between the two points, it will not always be very precise, as I shall show later. Errors of height are accordingly introrluced, which I estimate may amount to several hundred feet, even when a reliable value of the pressure has been obtained.

I need only say of spirit levelling that it is entirely out of the question to run a line of spirit levelling to the summit of a great peak. A tolerably decent track is essential.
245. We have cul out barometric observations on areount of lack of
to the point. There remains the method of observing the angle of olevation. It is from such observations that the height of Everest is deduced.

The discovery that Mount Everest, or as it was then designated "peak xv" was the highest mountain on earth, was made in the Computing Office of the Survey of India in 185.2. Those who had observed it were not aware of its pre-eminence, and it was the calculation of its height which brought this to light. Sir Andrew Waugh, who was the Superintendent of the Trigonometrical Survey at that time, decided to name this, the highest of peaks, Mont Everest, after his distinguished predecessor and former chief. This name, with Mont changed into Mount, has since then been adhered to by most. A few have tried to substitute names, claimed to be those in use by the local inhabitants; but up to date, all these have proved to be truly applicable to other peaks; and no local name for Mount Everest has been substantiated.

The observations on which the height 29,009 was based in 1852, were those made in the season 1849-50 from 6 stations in the plains of Bengal (figure 2), situated at distances ranging between 105 and 119 miles from Everest. Later observations were made in 1880, 81, 83 and 1902, from several stations in the neighbourhood of Darjeeling. These stations lie at distances between $85^{5}$ and 109 miles. It is only in 1921 that it has been permitted to trigonometrical surveyors to get closer up for observations, and it is expected that advantage will be taken of this in 1922.
246.

The name
Mount Everest.

## 247.

The observations of vertical angles to Everest.

248.

What is meant by the height of a mountain.
249. Height above the spheroid.

When we speak of the height of a mountain, it is understood, in a general way, that the height above sea level is meant. By sea level the mean level of the sea, freed from the effect of tides, is implied. The actual sea is distant 450 miles from Mount Everest, at its nearest. But we may extend sea level in imagination inland, by constructing imaginary canals along which the water of the sea could find its way. A practical way of getting to very ncarly the same result is afforded by spirit levelling. The spirit level is set up parallel or very nearty so, to the water surface of the imaginary canals; and by successive steps the elevation of any point of the line above sea level is determined. 'This method is applicable in fairly flat country, and so the depth of sen level below the earth's surface may be determined up to the fringe of the Himalaya.

But when we proceed into the hills this method fails. It is then necessary to arrive in some way or other, more or less precise, at the shape of the sea level surface right up to the mountain with whose height we are concerned.

Now geodetic operations, of which the earliest were executed more than 2000 years ago, have accumulated information which permits us to draw the conclusion that the form of the sea level surface is not very different from that generated by the revolution of an ellipse about its minor axis. This figure is generally referred to as an oblate spheroid, or briefly as "the spheroid". We shall for the present accept this as being the correct form of the sea level surface, and at a later stage discuss briefly the divergences which are found to occur.
Let us now consider the height above the spheroid. This is indr$A a$, and $B$ is the point whose height $B b$ is sought. $A a O$ and $B b 00$ are verticals meeting (approximately) in $O$. The angle $A O B$ is known from triangulation, and $\mathrm{aO}=\mathrm{bO}$ is the radius of curvature of the spheroid in the plane of the paper. If the true angle of elevation BAH were known, it would be a matter of simple trigonometry to find the length $O B$ and thence Bb .

Fig. 3.


But we must take things as they are, and consider the effect of refraction of the atmosphere. The path of a ray of light from $A$ to $B$ is not straight. It is bent into a curve, indicated by the dotted line. In observer at $A$ sees $B$ in the direction of the tangent to this curve, namely AT. If we do not take account of this fact, we shall find Tb for the height of $B$, a height in error by amount ' T ' . To fix ideas, I may say that in the case of the Everest observations, this error would be about 800 feet or more. It clearly can not be neglected.

As soon as surveyors found that refraction of light had a serious effect oi their observations, the assumption was made that the path of the light, instead of being a straight line, was a circle of small curvature. A little consideration will show then that the angle of refraction TAB increases directly as the distance AB. A rough idea of its maguitude is given by saying that it is about 3 seconds of arc per mile, or 5 minutes per hundred miles.

But it was noticed soon that refraction was by no means a constant, quantity throughout the day. Refraction is at its smallest value during the early afternoon hours. Moreover its value at this time is nearly the rame from day to day. Hence abont $185($ ) the practice arose of making observations of angular elevations of terrestrial objects between the hours of 1 and 4 p.m., a practice still rightly continued where possible.
250. Refraction.
251.

The observed Phenomena of terrestrial refraction.
252.

Diurnal change.
253. On the assumption that the dotted line $A B$ is circular, it is clear

Reciprocal observations. that the angle of refraction at $B$ is the same as that at $A$. If both these angles are observed, it is possible by considering the angles of $\triangle \mathrm{AOB}$ to determine the magnitude of the angle of refraction, a process sufficiently accurate for some purposes.
254. It was first stated about 1910 that the diurnal change in refraction Later deve. lopments.
observed at hill stations was small compared with that found at plain stations. In 1913, while considering the question, I noticed that the diurnal change in refraction varied as the temperature, minimum refraction occurring at the time of maximum temperature. This is well shown in the figures Nos. 4 and 5 where ordinates represent the apparent elevations of two points, and abscissae represent the temperature. Actual observations are shown by small circles, which are joined up by straight lines in the order $8,10,12$ and 14 hours. Attention is drawn to the approximate straightness of the lines.

Fig. 4


Fig. 5


I further noticed with surprise that the change was smaller on the longer ray of two from one station, which were examined, indicated by the greater slope of the lines in fir. 4. The lengths of the rays in figures 4,5 are 46 and 93 miles respectively. One had come to think of refraction as varying with the length of ray, and so expected its changes to be greater on a long ray.

These then are the main experimental facts. Let us see how far we can explain them, and predict them.

T'o find the path of a ray of light through the atmosphere, it is necessary to know the plysical laws of the air, and the conditions which obtain. Then the rest can be done by mathematics. In general, over a limited area, the atmosphere may be considered to be arranged in horizontal spherical layers of equal density. Only small local deviations from this state can exist. It remains to be known how the density of the air changes with the height above a datum surface. For other reasons it is more convenient to consider how the temperature changes with hoight. From this the changes of pressure and density may be
254.
255. found by the help of Boyle's law $p=C_{T} \rho$, and the mechanical equation of
equilibrium $d p=-\rho g d i h$. Finally it is necessary to know how the refractive index of air changes under the varying conditions met with. This is given by the law of Gladstone and Dale $\mu-1=K \rho$. From these three equations it follows that the curvature of the ray at a point is $\frac{1}{\sigma}=-\frac{K}{\mu} \frac{d \rho}{d h} \cot$ a. Everything is known, save the law of clange of density with height, which we proceed to consider.
256. Thermal equilibrium of the atmosphere.
257.

## Radiation.

If we consider the thermal equilibrium of the air, neglecting the diurnal heating to which it is subjected, the law of decrease of temperature and thence of density with height can be found. In the case of air, which is not saturated with water vapour, the decrease of temperature with height is nearly uniform, and follows the adiabatic gradient. This gradient is such that, if a given mass of air is taken from one height, and conveyed to another height, in adjusting itself to the new pressure it will also arrive at a temperature and density the same as that of the surrounding air, without receiving or giving up heat. This gradient is about $5^{\circ} \cdot 4 \mathrm{~F}$. per 1000 feet.

If the air is saturated with moisture, owing to the latent heat of water vapour, the gradient becomes $3^{\circ} \cdot 3 \mathrm{~F}$. per 1000 feet.

We must not, however, ignore the cycle of heat changes which occur during the clay, which by radiation communicate heat to the air.

In the course of the day, the air undergoes a cycle of heat effects. The sun rises, and heat traverses the atmosphere.

Some of this heat is absorbed by the air, and the remainder reaches the earth. Here, part is reflected. The reflected portion again traverses the air, and is partially absorbed by it. The portion absorbed br the earth gives rise to earth radiation, which in due course traverses the air. In addition the air in close contact with the earth receives heat by direct conduction. Now air is a barl conductor of heat, and this conduction effect is only appreciable in the lower layers.

First consider the radiation effects. The absorption of dry air is almost negligible. But when moisture is present,-and it always is,the case is considerably different. The air then takes up heat from the several types of radiant heat which occur, to an extent proportional to the absolute humidity. On the whole, except where there are considerable changes with height of lommidity, it seems a fair deduction to say that the air at different heights is changed by much the same number of degrees of temperature. Is far as I can make out, the change of temperature on account of radiation is less than $\bar{\sigma} \mathrm{F}$, and so I conclude that the gradient of temperature is very little affecterl loy the radiation. Up to date I have not been able to consult practical metcorologists on this point, and what I have to say depends on the interpretation of refraction, and barometric observations. combined with mathematical theory.

Now I turn to the conduction effect of the earth on the air in contact with it. I find, on working out the conduction of heat in anr that a periodic change of period 24 hours, and of given range at the surface, will cause at the height of 100 metres an effect of about $1 \%$ of the surface value. This is a purely mathematical result.

My interpretation of this reasoning is illustrated in figure 6. It appears that there is a fairly uniform gradient, within certain limits of height, at all hours. This gradient can be less rapid than the adiabatic gradient, but can not be more rapid; for then there would be a convective adjustment. It appears that at midday, this uniform gradient extends practically down to the earth's surface; while, at the earlier hours of the day, the curve of temperature deviates considerably, as shown. [n the afternoon, it may be that the gradient near the surface cxceeds the general gradient above; but it can not exceed the adiabatic gradient.

Fig. 6.


Lapse of Temperature with height

To assist in the deduction of the temperature at various lwights, some ten years ago I had simultancous realings of barometers merle at Dohra Dün an.lat Massondie. Mrosoovie is about 10 miles distant from
259. (Contd.)
260. Application to the case of refraction.
261.

The form of the sea level surface or geoid.

Dehra Dūn, and some 4400 feet higher. The readings were made at various hours of the day, and continued for a month. From these readings, the difference of height was computed by the ordinary formula. The mean values for each hour were worked out, and compared with a value found by spirit levelhng. The discrepancies are shown in figure 6 . These may be attributed to faulty values of the mean air temperature employed. In general the heights were too small, except near midday. This is equivalent to too small an evaliation of the mean temperature of the intervening air column. It is what would be expected with the temperature law I have exhibited on the figure. And I may add that the explanation agrees well in amount.

For the time of minimum refraction, or maximum temperature, I find that a constant gradient of temperature explains very well observed results at all heights. The difficulty formerly was to compute the diurnal change in refraction. From the diagram it is clear that the effect is due to the low lying layers of air. It is easy to deduce its amount, which is found to be proportional to the deviation of the temperature, dependant on conduction, and also proportional to the cotangent of the angle of elevation. This explanation based on the temperature law illustrated, explains $90 \%$ of the effect.

We now have something to work on to determine the refraction at all hours, provided certain data as regards surface temperature, are available. It is undoubtedly best to make observations of vertical angles in the afternoon hours. But, on account of clouds, which very often obscure peaks at these hours, one must perforce have some observations at other hours. It is for these that the correction for diurnal change in refraction is necessary. Unfortunately in many of our height observations, surface temperatures are not available, and one can only make estimations of their probable values. Before actually applying this to the case in hand, I must give a short statement of the part played by the irregular form of the sea level surface.

The sea level surface is designated for brevity "the geoid". If a line is drawn at right angles to the geoid, this will represent the vertical at the place. It is the direction of the force of gravity there, and it is with reference to this vertical that any observing instrument, levelled in the ordinary way, is set up. Now this line is not in general at right angles to the spheroid at the corresponding point. The angle between the two verticals is called the deflection of the plumb-line.

The way in which deflections of the plumb-line are measured, may be briefly explained. First of all a series of triangulation is executed between two points, and, assuming that these lie on the spheroid, it is possible to compute their latitudes and longitudes. These quantities are also observed astronomically, and slightly different values are found The differences are the components of plumb-line deflection in the two directions at right angles.

In figure 3, I have shown diagrammatically the geoid. It is clear that before any calculation can be made of height above the geoid, its form must be known. It is however easier to compute the height above the spheroid, and then, if possible, apply a correction for the difference. In this way all the several observations from surrounding stations should give the same result.

To do this, it is first necessary to modify observed angles of elevation, which are with reference to the geoidal vertical, and so express them with reference to the spheroidal vertical. It will be seen then, that it is necessary to know the deflection of the plumb-line at all observing stations.

This brings in another uncertainty. Although we know the deflections at some 500 stations in India, this is not nearly enough. In the case of the observations to Mount Everest, plumb-line deflection is only known at a few of the stations, and then only in one component. Until these deflections have been observed, we must estimate them as best we can.

From experience elsewhere, it is probable that the deflections are small at most of the plains stations involved.

I have done the best I can with incomplete data, and the results are exhibited in table on page 299. The results show a considerable improvement on what has formerly been obtained. The outstanding difficulties arise:
(1) when the time of observation has not been in the early afternoon hours, in the case of observations from plains stations.
(2) when the plumb-line deflections are unknown.

Even so, the agreement reached is good.
We arrive at the height of Mount Everest above the spheroid as 29,149, with a probable error of $4 \cdot 6$ feet. This is unlikely to be in error by more than 1 s feet. For Kinchinjunga the case is more favourable. The deduced height is 28,287 with probable error of $2 \cdot 2$, not likely to be wrong by more than 7 feet.

These heights are above that spheroid which agrees with the geoid in the Bengal plains. We can only estimate the rise of the geoid at Everest and Kinchinjunga above this spheroid. The heights above the geoid arrived at will be less than the spheroidal heights by some ( 37 feet at Phallut) 70 and 60 feet. I estimate that these quantities are liable to be wrong by 15 and 5 feet respectively.

Our final results are :-
Everest 29,080, with a possible error of 30 feet.
Kinchinjunga 28,227, " " " "12 "
265. Reason for using geoidal heights.

It may seem fanciful to some to worry about the geoidal height. I must say then that this is the only height which is liable to be the same, when deduced from observations from different sides. It is the height which counts in all practical engineering projects involving levels. It is also the measure of effort required by the mountaineer who climbs the height.

In view of this year's assault on Everest it may be of interest to give a short statement of previous great climbs. The heights reputed to have been reached must be accepted with proper regard to their liability to error. When the top of a peak has been reached, if this peak has been fixed by trigonometrical observations, it may be 100 feet wrong. Points fixed by barometers may be as much as 500 feet wrong.
(a) *About 1860 , possibly a few years earlier, a khalasi fixed a pole on Shilla in Spiti. Its great height was unknown till the computations were worked out; and when it was found to be 23,050 feet, it aroused no interest. The record was lost for about 50 years. It lasted for 45 years.
(b) During surveys of Kāngra, Kumaun, Kashmīr and Ladilhh, 1855-65, no less than 37 ascents were made to over 20,000 feet. These were all fixed trigonometrically.
(c) Amongst these may be mentioned Johnson's claim on E. 61, on the K'un-lun, in 1865, height 23,890 ; now proved to have been fallacious, for he plotted the point wrongly on his plane-table.
(d) The next claim is W. W. Graham's on Kabru, in Sikkim, 24,002. The latest authorities, including Raeburn and Collie, believe that he mistook the Peak and climbed a much lower one known as "The Forked Peak".
(e) The next claim is that of Hunter Workman on Pyramid Peak in the Kara-koram region in 1903. The Peak las not been triangulated and the height attributed by the climber is open to grave doubts.
(f) Mrs. Bullock Workman's claim to have reached the summit of Pinnacle Peak in Suru district of Kashmir is not doubted, but her estimated height 23,300 has bern proved by trignometrical operations some 500 feet too high.
(g) In 1905, Longstaff with two Swiss guides attempted the ascent of Gurla Mandhata in Garhwil; authorities agree in estimating the altitude reached to be approximatel! 24,000 feet.
(h) But the first certain altitude record in India to beat the Shilla khalasi is Dr. Longstaff's aveent of Trisul, in Garhwal, 23,360. This height has bern triangulated and rests on evidence absolutely independent of the climber': estimate.

* This table of recorde was furnished by Bt. Major K. Mason, M.C., R.E.
(i) Two Norwegians, Rubenson and Monrad have beaten Longstaff's Trisul climb by reaching the summit of Kabru in the same year. The triangulated height is 24,002 .
(j) The generally accepted altitude record was reached by the Duke of the Abruzzi in 1909 on the Bride Peak, in the Kara-koram. The altitude reached, 24,583 by Fortin barometer has not been checked by trigonometrical operations.
(k) The highest camp at which humans bave passed a night is that of Mr. C. F. Meade on the north arête of Kamet, Garhwàl. Trigonometrical readings have shown this to be at 23,500.
(l) The highest point reached during the reconnaissance of Everest (1921) was approximately 23,300 (?); roughly there is another 6,000 feet to go.

Height of Mount Everest and Kinchinjunga

Observing station		Mount Everest				Kinchinjunga				
Name	Height	'Iime	$\left\|\begin{array}{c}\text { Diurnal } \\ \text { change } \\ \text { in } \\ \text { refraction }\end{array}\right\|$	Plumb-	Height	Time	$\left\lvert\, \begin{aligned} & \text { Diurnal } \\ & \text { change } \\ & \text { in } \\ & \text { refraction } \end{aligned}\right.$	Plumb.   line	Height	
	feet	hours	second 6	seconds	feet 29171	hours	seconds	\|seconds		feet
$\begin{array}{ll} \text { Jarol } & . . \\ \text { Mirzapur } & \end{array}$	245	10.7 16.0			29158					
Janjipati ...	255	$17 \cdot 4$	8		29119					
Ladnia $\ldots$	235	14.9			29160					
Harpur C $\ldots$   Baisi $\ldots$	219	$16 \cdot 0$			29143	$15 \cdot 0$ 16.0			28281 28282	
Minai	228	$15 \cdot 3$			29170	17.4	8	(10) $\dagger$	28312	
Bandarjūla	238					$9 \cdot 3$	26		28296	
Thakurganj	264					$8 \cdot 9$	15	(15) $\dagger$	28287	
Dumdingi ...	307					$15 \cdot 6$	0	(20) $\ddagger$	28282	
$\begin{gathered} \text { HILL } \\ \text { STATIONS } \end{gathered}$										
Senchal ...	8623	$9 \cdot 6$	0	$23 \cdot 0$	29136	$10 \cdot 4$	0	$34 \cdot 6$	28985	
Tonglu ..	10098					$10 \cdot 4$	0	$42 \cdot 1$	$28 \geq 87$	
Sandakphı	$11960$					101	0	$42 \cdot 1$	28287	
Phalhut ...	11853	$9 \cdot 5$	0	$22 \cdot 5$	29131	$10 \cdot 0$	0	$35 \cdot 6$	28280	
Mean					29149				28287	
Probable error	...				$\pm 1 \cdot 6$				$\pm 2 \cdot 2$	

[^25]
## PUBLICATIONS

OF THE

## SURVEY OF INDIA

Obtainable from the Director, Geodetic Branch, Survey of India, Debra Dūn, U.P.

## SYNOPSIS

## Part I-Numerical Data

				Page
Triangulation Pamphlets	...	.	...	302
Levelling Pamphlets	...		...	302, 303
Tide-Tables	$\ldots$	$\cdots$	...	303, 304
Part II-Geodetic Works of Reference				
Everest's Great Arc Books				304
G.T.S. Volumes	$\ldots$		306,	307, 308

## Part III-Historical and General Reports

Memoirs ..... 309
$\begin{array}{lc}\text { Annual and } & \text { Special } \\ \text { Reports } & \ldots . .\end{array}\left\{\begin{array}{l}\text { General Reports } \\ \text { Map Publication and Office Work } \\ \text { Extracts from Narrative Reports }\end{array}\right.$ ..... 309
Records of the Survey of India ... 310, 311 Geodetic Reports ... ... 312
Part IV-Catalogues and Instructions

Departmental Orders $\ldots$	$\ldots$	$\ldots$	$\ldots$	312,313
Catalogues and Lists $\ldots$	$\ldots$	$\ldots$	$\ldots$	313,314
Tables and Star Charts	$\ldots$	$\ldots$	$\ldots$	314,315
Old Manuals	$\ldots$	$\ldots$	$\ldots$	315
Survey of India Handbooks	$\ldots$	$\ldots$	$\ldots$	315,316
Notes and Instructions	$\ldots$	$\ldots$	$\ldots$	316,317

Part V-Miscellaneous Papers


## PART I.-NUMERICAL DATA

Triangulation Pamphlets-each covering one square degree, giving descriptions, positions, (latitude and longitude) and heights of triangulated points and other data with chart. The chart shows the plan of triangulation with the position of stations and points. Triangulation data falling in $1 / \mathrm{M}$ sheet are printed in a series of sisteen pamphlets A to P In the last pamphlet of every series, a coloured map on scale 1 inch $=16$ miles approsimately is given in addition to the chart, to illustrate the topographi. cal features of the area covered by the $1 / \mathrm{M}$ sheet. Pamphlets haviug this map are cbarged Ks. 1-8 extra. An Index chart of the pujlished triangulation pamphlets is given at page 324 .

Price Re. 1 per pamphlet. Published at Dehra Dün.
Levelling Pamphlets-giving heights and descriptions of all Bench marks, fired by Levelling of Precision. Each pamphlet embrnces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ map of Iudia. Each is illustrated by a map of the area. Published at Dehra Dūn.
(i) Levelling of Precision in India and Burma-


Levelling Pamphlets-(Continued).

(ii) Lerelling of Precision in Mesopotamia-

Descriptions and heights of bench marks in Mesopotamia in one pamphet, published at Dehra Dūn, 1923. Price lis. 3 .

## Tide-Tables--

Since 1881 Tidal predictions based on the observations of the Surver of India have been published annually by the India Office, London, up till the year 1922. From 192:3 onwards the prediction and publication have been unclertaken at Dehra Dūn by the Sarver of India. The tables give the times and heights of high and low water for every day in the year for 37 ports, and are published early in the previous year. They are published as follows:-

## Tide-Tables-(Continued).

(i) A single volume styled "The Major Series" comprising, Tide-Tables for the following ports:-

Suez, Aden, Bushire Karāchi, Okha Point \& Bet Harbour. Bhār. nagar, Bombay, Cochin, Tuticorin, Pāınban Pass. Colombo, Madras, Viza. gapatam, Dublat, Diamond Harbour, Kidderpore, Chittagong, Elephant Point and Rangoon. Price Rs. 8/-
(ii) Combined Pamphlets as below:-
(a) $\left\{\begin{array}{l}\text { Okha Point and Bet Harbour (M } \\ \text { Porbandar } \\ \text { Port Albert Victor (Kāthiāwār) } \\ \text { Bhāvnagar Price }\end{array}\right.$ (Bhāvnagar Price Rs. 1-8.
(b) $\left\{\begin{array}{l}\text { Marmagao } \\ \text { Kārwāı }\end{array}\right.$
(c) $\left\{\begin{array}{l}\text { Dublat (Sägar Island) } \\ \text { Dianond Harbour } \\ \text { Kidderpore (Calcutta) }\end{array}\right\} \begin{gathered}\text { Hooghly River } \\ \text { Price Rs. 1-8. }\end{gathered}$
(d) $\left\{\begin{array}{l}\text { Amherst } \\ \text { Moulmein }\end{array}\right\} \begin{gathered}\text { Moulmein River } \\ \text { Price Rs 1-2. }\end{gathered}$
(e) $\left\{\begin{array}{l}\text { Tuticorin } \\ \text { rāmban Pass (Island of Ränesv }\end{array}\right.$
(f) $\left\{\begin{array}{l}\text { Colombo } \\ \text { Galle } \\ \text { Trinconalee }\end{array}\right\} \begin{aligned} & \text { Ceylon } \\ & \text { Price Rs. 1-8. }\end{aligned}$
(g) $\left\{\begin{array}{l}\text { Diamond Island } \\ \text { Bassein }\end{array}\right\} \begin{gathered}\text { Bassein River } \\ \text { Price Rs. 1-2. }\end{gathered}$
(h) $\left\{\begin{array}{l}\text { Elephant Point } \\ \text { Rangoon }\end{array}\right\} \begin{gathered}\text { Rangoon Kiver } \\ \text { Price Rs. I.2. }\end{gathered}$
(iii) Separate pamphlets for each of the following ports:-

Suez. Aden, Basrah, Bushire, Karāchi, Bombay, Beypore, Coclin, Negapatam, Madras, Cocanāda, Vizagapatam, lalse Point, Chittagoug, Akyab, Mergui, and Port Blair. Price of each pamphlet is As. 12.

## PART II.—GEODETIC WORKS OF REFERENCE

## Everest's Great Arc Book.

1. An account of the Measurement of an Are of the Meridian be. tween the parallels of $18^{\circ} 3$ and $2 b^{\circ} 7^{\prime}$, by Captain George Everest East India Company, London, 1830. (Out of print)
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 2 t^{\circ} 7^{\prime} 11^{\prime \prime}$ and $29^{\circ} 30^{\prime} 48^{\prime}$, by Lt.-Colonel G. Everest, r.r.s. East India Company, Londun, 1847 (Out of print).
3. Engravings to illustrate the above. London, 1817 . (Out of print).
G.T.S. Volumes-describing the operations of the Great Trigonometrical Survey.

## G.T.S. Volumes-(Continued).

Vol. I-Standards of Measure and Base Lines, also an Introductory A ccount of the early operations of the Survey, during the period of 1800-1830. Dehra Dūn, 1870. (Out of print).
Appendir No. 1. Description of the mellod of comparing, and the apparatus empluyed.
Appendix No. 2. Comparisons of the Lengths of 10 -feet Standards A and B. and deterininations of the Difference of their Expansions.
Appendix No. 3. Comparisons between the 10 -feet Standurds $I_{B} I_{S}$ and $A$.
Appendix No. 4. Comparisons of the 6 -inch Brass Scales of the Com. pensuted Microscopes.
Appendix No 5. Determinntion of the Iength of the Inch [7.8] on Cary's 3 -fool Brass Scale.
Appendix No. 6. Comparisons between the 10-feet Standard Bare $I_{S}$ and A for determining the Expansion of bar A.
Appendir No. 7. Final determination of the Differences in Length be. tween the 10 -feet Standurds $I_{B} I_{S}$ nnd $A$.
Appendix No. 8. On the 'Thermometers employed with the Standarda of Length.
Appendix No. 9. Determination of the Lengths of the Sub-divisions of the Inch [a.b].
Appendix No. 10. Report on the Practical Errors of the Measurement of the Cape Comorin Base.

Vol. II--A History and General Description of the Reduction of the Principal Triangulation. Dehra Dūn, 1879. (Out of print).
Appendix No. 1. Investigations applying to the Indian Geodesy.
Appendix No. 2. Ihe Micrometer Microscope Theodolites.
Appendix No. 3. On Observations of Terrestrial Refraction at certain stations situated on the plains of the Punjab.
Appendix No. 4. On the Periodic Errors of Graduated Circles, \&c.
Appendix No. 5. On certain Modifications of Colonel Lverest's system of observing introduced to meet the specialities of particular instruments.
Appendix No 6. On Tidal Olservations at Karachi in 1855.
Appendix No. 7. An alternative Method of obtaining the Formula in Chapters VIII and XV employed in the Rednction of Triangulation.-Additional lormula and Demonstrations.
Appendix No. 8. On the Dispersion of Cirenit lirrors of Trrangulation after the Angles Lave been corrected for Figaral conditions.
Appendix No. 9. Corrections to azimuthal obscrvations for imperfect Instrmental Adjustments.
Appendix No. 10. Reduction of the N.W. Quadrilateral-the Non-Circuit Triangles and their Final Figural Adjnstments.
Appendix No. 11. The 'Theoretical Firoms of the Trianyalation of the North-West Quadrilateral.
Appendix No. 12. simultancous heduction of the N. W Quadrilateral -the compurations.
Vol. III-North-West Quadrilateral The Principal Trianguiation, the Bnse-Line Figures, the Kirāchi Longitudinal, N.W. Himáaya, and the Great Indus series. Dehra Dün, 1873. (Out of print).

## G.T.S. Volumes-(Continued).

Vol. IV-North-West Qualrilateral-The Principal I'riangulation, the Great A re-Section $24^{2}-30^{\circ}$, Rahūn, Gurhāgarh and Jogi. 7 Iila Meridional Series and the Sutlej Series. Dehra Dūn, 1876. Prico Rs. 10-8.
Vol. IVA-North-West Quadrilateral-I'he Principal Triangulation, the Jodh pur and the Eastern Sind Meridional Sories with the delnils of their Reduction and the Final Results. Dehra Dūn, 1886. Price Rs, 10.8.

Vol. V-Pendulam Operations of Captains	J. P. Basevi and W. J.	
Heaviside, and their Reduction. Dehrn Dūn and Calcutta,		
	1879.	Price Rs. 10.8.

Appendix No 1. Account of the Remeasurement of the Length of
Kater's Pendulum at the Ordnance Surves Office,
Southampton.

Appendix No. 2. On the Relation between the Indian Pendulum Opera. tions, and those which have been conducted elsewhere.
Appendix No. 3. On the Theory, Use and History of the Convertible Pendulum.
Appendix No. 4. On the Length of the Seconds Pendulum determinable from Materisls now existing.
Appendix No. 5. A Bibliographical List of Works relating to Pendulum Operations in connection with the Problem of the Figure of the Eartl.
Vol. VI-South.East Qnadrilateral - The Principal Triangulation and Simultaneous Reduction of the following Series:-Great ArcSection $18^{\circ}$ to $24^{\circ}$, the East Coast, the Calcutta and the Bidar Longitudinal, the Jubbulpore and the Bilāspur Meridionals. Dehra Dūn, 1880. (Out of print.)
Vol. VII-North-East Quadrilateral - General Description and Simultnneous Reduction. Also details of the following five series:-North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karära Meridional.

Dehra Dūn, 1882. Price Rs. 10-8.
Appendix No. 1. The Details of the Separate Reduction of the Budhon Meridional Series or Series $J$ of the Norlh.East Quadrilateral.
Appendix No. 2. Reduction of the North-East, Quadrilateral. The Noncircait T'riangles and their Final Figural Adjastments.
Appendix Io. 3. On the Theoretical Errors generated respectively in Side, Azimath, Latitude avi Longitnde in a Chain of Triangles.
Appendix No. 4. On the Dispersion of the Recideal Errors of a Simultaneous Reduction of acveral chinins of Triangles.
Vol. VIII-North-East Quadrilateral-Detaila of the following eleven series:-
Gurwāni Meridionna, Gora Meridional, Hubianong Meridiomal, Chendwār Meridional, North Parasnãth Meridional, North Malūncha Meridional, Calcutta Meridional, East Calcuta

## G.T.S. Volumes-(Continued).

Longitudinal, Brahmaputra Meridional, Eastern FrontierSection $23^{\circ}-26^{\circ}$, and Assam Longitudinal. Dehra Dūn, 1882 . Price Rs. 10.8.
Vol. IX-Telegraphic Longitudes-during the years 1875.77 and 1880-81. Dehra Dūn, 1883. Price Rs. 10.8.

Appendices | to Part I. |
| :--- |\(\left\{\begin{array}{l}1. Determination of the Geodetic Elements of Longitude Stations. <br>

2. Descriptions of Points osed for Longitude Stations. <br>
3. Comparison of Geodetic with Electro-Telegraphic Arcs of Longitade. <br>
4. Circuit Errors of Observed Arcs of Longitude. <br>
5. Results of Idiometer Obser vations made during Season 1880-81.\end{array}\right.\)

1. Sitations of the Longitude Stations at Lombay, Aden and Suez.

Appendices $\{$ 2. Survey Operations at Aden.
to Part II. 3. Results of the Triangulation.
4. Right Ascensions of Clock Stars.

Vol. X-Telegraphic Longitudes-during the years 1881-82, 1882-83, and 1883-84. Dehra Dūn, 1887. Price Rs. 10-8.

1. Determination of the Geodetic Eloments of the Longitade Stations.
2. Descriptions of Stations of the Connecting Triangulation and of
those at which the Longitude Observations were taken.
Appendices
to Part I. 3. On the Errors in $\Delta \mathrm{L}$ caused by Armatare-time and the Retardation of the Electric Current.
3. On the llejection of some doabtfal ares of Season 1881-82.
4. On the probable causes of the Errors of Arc-measarements, and on the Nature of the Defects in the 'lransit Instruments which might prodace them.
Vol. XI-Astronomical Latitudes -during the period 1805-1885. Dehra Dūn, 1890.

Price Rs. 10-8.
Vol XII-Southern Trigon-General Lescriptiou and Simultaneous Reduction. Also details of the following two sories:-Great Arc-Section $8^{\circ}-18^{\circ}$, and Bombay Longitudinal. Dehra Dūn, 1890.

Price Rs. 10.8.
Vol. XIII-Southern Trigon-Details of the following five series :-South Konkan Coast, Mangalore Meridional, Madras Meridional and Const, South-Enst Coast, and Madras Longitudinal. Dehra Dūn, $1890 . \quad$ Price Rs. 10-8.
Vo! XIV-South-West Quadrilateral - Delails of Principal Triangulation and Simultaneous Keduction of its component series. Dehra Dūn, 1890. Price Rs. 10-8.
$\nabla$ ol. X V -Telegraphic Longitudes-from 1885 to 1892 and the Revised Results of Volumes IX and $X$ : also the Simultaneous Reduction and Final Results of the whole Operations. Dehra Dūn, 1893. Price Ies. iC 8. Appendix No. 1. Determination of the Geoletic Elements of the Longitude slations.
Appendix No. ©. On Retaritation. (A numarical mistrike was made in this uppendix in the conrersion of a fermula from kilometres to miles: the rendelations dawn camot therefore be upheld).
Vol. XVI-Tidal Observations- from 1873 to 1502, and tha Methods of Reduction. Dehar Dūu, 1901 Frica ils. 10-S.

## G.T.S. Volumes-(Continued).

Fol. XVII-Telegraphic Longitudes-during the years 1894-95-96. The Indo-European Arcs from Karāchi to Greenwich.
Dehra Dūn, 1901.
Price Rs. 10-8.
Appendix No. 1. Descriptions of Points used for Longitude Stations.
Appendix No. 2. The Longitude of Madras.
Vol. XVIII-Astronomical Latitudes-from 1885 to 1905 and the deduced values of Plumb-line Deflections. Dehra Dūn, 1906.

Price Rs. 10.8.
Appendix No. 1. On Deflections of the Plumb-line in India
Appendix No. 2. Determination of the Geodetic Eiements of the Latitucie Stations oi Bajamara, Bahuk, Lambutuch and Kidarkanta.
Appenciix No. 3. On the ( $\mathrm{N}-\mathrm{S}$ ) Difference exlibited by Zenith Seclor No. 1.
Appendix No. 4. On the Value of the Micrometer of the Zenith Telescope.
Appendix No. 5. On the Azimuth Observations of the Grent Trigonometrical Survey of Indin.
Appendix No. 6 A Catnlogue of the Publicntions of the Great Trigo. nometrical Survey of India.
Appendix No. 7. On the combination weights employed.
Vol. XIX-Levelling of Precision in India- from 1858 to 1909. Dehra Dūn, 1910.

Price Rs. 10-8.
Appendix No. 1. Ixperiment to test the chauges, due to Moistare and 'lemperatare, in the Length of a Levelling Staff,
Appendix No. 2. On the erection of staudard beach marbs in India dnuing the years $1904-1910$.
Appendix Nu. 3. Memorandum on the steps taken in $1905 \cdot 1910$ to enable movements of the liartb's crust to be detected.
A!pendix No. 4. Dynamic and Orthometric corrections to the Himalayan levelling lines and circuit : nod a consideration of the order of marnitude of possible refraction errors.
Appendix No. 5. The passage of rivers ly the Levelling Operations.
Appendix No. 6. The Errors of the Trigonometrical values of Heights of stations of the principal triangulation.
Appendix No. 7 . The effect on the spheroidal correction of emploring Theoretical instead of Ohsfrved values of Gravity and a discnssion of difierent. Eommle giving variation of Gravity with Latitnde and Height.
Appendix No. 8. On the discrepancy hetween the Trignnometrical and spirit level values of the difiremee of height between Dehra Dinn and Mussoorie.
Vol. XIXA-Bencb Marks on the Sonthern Lines of Cevelling. Dehra Dun, 1010.

Price Rs. 5 .
Vol. XIXB-Bench Marks on the Northern Lines of Lerefling. Dehra Dun, 1910.

Price Res.

## PART III.-HISTORICAL AND GENERAL REPORTS

 Memoirs.1. A Memoir on the Indian Surveys, by C. R. Markham, India Office, London, 1871.

Price Rs. 5
2. A Memoir on the Indian Surveys. (Second Edition), by C.R Markham, c.b., f.r.s., India Office, London, 1878.

Price Rs. 5-8.
3. Abstract of the Reports of the Surveys and of other Geographical operations in India, 1869-78, by C. R. Marliham and C.E. D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890, by C. E. D. Black, India Office, London, 1891. Price Rs. 5-8.
"Notes of the Survey of India" are issued monthly. Price As.2.

## Annual and Special Reports.

Reports of the Revenue Branch-1851-1877. (1851-67 and 1869-70, out of print). Price Rs.3.
Ditto Topographienl Branel-1860-1877. (Out of print)
Ditto Trigonometrical Branch-1861-1878.-(1861-71, out of print). Price Rs. 2.
In 1878 the three branches were amalgamated, and from that date onwards annual reports in single volumes for the whole department, were published as follows:-

## from 1877-1900 (1877.79, 1887-88, 1895-96 and 1897-98, <br>  (from 1900-1922 (1902.04 and 1906-08, out of print). Price Rs 2 per volume.

From 1900 onwards the Report was issued ammally in the form of a condensed statement known as (a) the "General Report" supplemented by fuller reports, which were called (b) "Extracts from Narrative Reports" up to 1909, and since then until 192l have been styled (c) "Records of the Survey of Indin ".

From 1022 the anmal reports are pullished in three sepnrate volumes of octavo size viz., (a) General Report which is confined toreporting the Survey operations of the ordinary field parties and detachments with only brief abs. tracts of geodetic operafions, Map luhliation and ollice work Publishod numually Price Rs. : (d) Map Publication and Office Work report which contans all the Index Maps showine the Lousess of Map Publication on all scales, with reports on publication amb issue. Pulibished amually liegiuning with year 192t. Price lie. 1. (e) (Acodetic Report which includes full details of all scientific: worls of the (reodetic Branch, Survey of India Cxcluding the work of the Dehra Drawing Oflice and Publication Ofice. Vol. I of this series covers a prome of three yous 1922-25. Price Rs. 6. Subsequent volumes will be published annually. There will be in addition occasional Records volumes.

## Annual Reports.-(Continued).

These fuller reports are available as follows:-
(b) Extracts Volumes.

1900-01-Recent Improvements in Photo-Zincography. G. 'I. Triangulation in Upper Burma. Latitude Operations. Experimental Base Mensurement with Jäderin A pparatus. Magnetic Survey. 'Iidal and Levell. ing. 'Topography in Upper Burma. Calcutta, 1903 (Out of print).

1901-02-G.'I'. Triangulation in Upper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling. Topography in Opper Burma. 'lopography in Sind. Topography in the Punjab. Calcutta, 1904. (Out of print).

1002-03-Principal Triangulation in Upper Burma. Topograply in Opper Burma. 'Topography in Shan States. Survey of Sāmblarr Lake. Lati. tude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in 'I'raverse Surveys. 'I'raversing with the Subtense Bar. Compilation and Keproduction of Thāna Maps. Calcutta, 1905. Price Re. 1-8.
1903-04-Magnetic Survey. Pendulum. Tidal and Levelling. Astro. nomical Azimuths. Utilization of old Traverse Data for Modern Survess in the United Provinces. Identification of Snow Peaks in Nepal. Topographical Surveys in Sind. Notes on town and Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, 1906. Price Rs. 1.8.
1904.05-Magnetic Surveg. Pendulum Operations. I'idal and Levelling. I'riangulation in Baluchistān. Survey Operations with the Somaliland Field Force. Calcutta, 1907.

Price Rs. 1.8.
1905.06-Magnetic Survey. Pendulum Operations. Tidal and Levell. ing. Topography in Shan States. Calcutta, $1908 . \quad$ Price Rs. 1.8.
1906.07-Magnetic Survey. Pendulum Operations. 'Tidal and Levelling. Triangulation in Baluchistān. Astronomical Latitudes. Topography in Shan States. Calcutta, 1909.

Price R8. 1.8.
1907.08-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operations. Topography in Shan States. Calcutta, 1910. Price Rs. 1-8.
1908-09-Magnetic Surveg. Tidal and Levelling Pendulum Opera. tions. Triangulation. Calcutta, 1911.

Price Rs, 1.8.
(c) Records of the Survey of India.

Vol. r-1909-10 -'Topographical Survey. Triangulation. Tidal and Levell. ing Operations. Geodetic Survey (Astronomical latitudes and penrlulum observations). Marnetic Survey. Calculta, 1912. Price Rs. 4.
Vol. II-1910.11-Topographical Survey. Triangulatinn. Tidal and Levelling Operations. Geodetic Surrey. Mannetic Surver, Calcutta, 1912.
Vol. III-1911-12-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Surver. Tragnetic Surver.
Calcutta, 1913.

Annual Reports.-(Continued).
Vol. IV-1911-13-Explorations on the North-East Frontier-North Burma, Mishmi, Abor and Mīri Surveys. Calcutta, 1914. Price Rs. 4
Vol. V--1912-13-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey. Note on the relationship of the Himalayas to the Indo-Gangetic Plain. Calcutta, 1914.

Price Rs. 4.
Vol. VI-1012-13-Link connecting the Triangulations of India and Russia. Delira Dūn, 1914.

Price Re. 4.
Vol. VII-1918-14-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey (Annual report and Government Committee's report). Note on Scales and cost rates of Town plans. Calcutta, 1915. Price Rs. 4.
Vol. VIII- $\left\{\begin{array}{l}\text { 1865.79 Part II } \\ \mathbf{1 8 7 9} 92\end{array}\right\}$ Part II $\}$ Explorations in Tibet and neighbouring regions. Dehra Dūn, 1915. Price of each part Rs. 4
Vol. VIII (A)-1914-Explorations in the Eastern Kara-koram and the upper Fārkand Valley, by Lt.Colonel H. Wood n.e., Dehra Dūı 1922. Price Rs. 3.

Vol. IX-1914-10-Topographical Survey. Triangulation. Tidal and Levelling Operations. Magnetic Survey. Criterion of strength of Indian Geodetic Triangulation. A traverse signal for City Surveys. "The plains of Northern India and their relationship to the Himálaya Mountains" an address by Colonel S.G. Burrard, frs. Report on Turco-Persian Frontier Commission. Calcutta, 1916. Price Rs. 4.
Vol X-1915-16-Topographical Survey. Tidal and Levelling Operations. Magnetic survey. Mechanical Integrator for calculating Attractions (illustrated). Traverse Survey of the boundary of Imperial Delli.

Dehra Dūn, 1917. Price Rs. 4 .
Vol. XI-1916-17-Tupographical Survey. Triangulation-use of high trestle for stations and 100 -feet mast siguals. Tidal and Levelling Operations. Magnetic Survey. Note on Basevi's Pendulum Operations at Morê. Photo-Litho Ofice-New method of preparing Layer plates-Developments and Im. provements in preparing Tint-plates.

Dehra Dūn, 1918. Price Rs. 4.
Yol. XI-Notes on Survey of India Maps aml the modern developmant if Indian Cartography, by Lt.-Colonel W. M. Coidstream, r.e., Superintendent, Map Publication. Calcutta, 1019. Price Rs.
Foldili-1917.18-Topographical Survey. Tilal and Levelling Operations. Magnetic Survey. Photo-Lithonffice-the Powle Pocexs. Problem of the Himalayan and Gangetio 'irvuch-Review by Dr. A. Morley Davies Dehoa Dūn. 1970 Price ?e. A.
 Levelling in Mesopotamia. Magnetic Survey.

Dehra Dūn, 1900. Preice Ss. 4.

Annual Reports.-(Ccntinued).
Vol. XV-1919-20-Topographical survey. Tidal work. Levelling-pro. posed new level net. Magnetic Survey. The Earth's Axes and Figure, by J. de Graaft Hunter (a paper read at the R. A. S. Geophysical Meeting). Report on the expedition to Kimet. Note on the Topography of the Nun Kun Massif in Ladabh. Dehra Dūn, 1921. Price Rs. 4.
Vol. XVI-1920-21—Topographical Survey. Tidal work. Levelling and Magnetic Survey. High Climbs in the Himālaya prior to the Everest Expedition. Mt. Everest Survey Detachment Report, 1921. 'Iraverse Survey of Allahābād city. Settlement of Boundary between Mysore and South Kanara.

Dehra Dūı, 1922. Price Rs. 4.
Vol. XVII-1923-Memour on Maps of Chinese Turkistīn and Kansu from the Surveys made during Sir A. Stein's Exploratoins, 1900-01, 1906-08, 1913-15. Dehra Dū॥ 1923. Price Rs. 12.
Vol. XVIII-1921-22-Topographical Survey. 'Tidal work. Levelling and Mignetic Survey. 'Iraverse Survey of Allahābād citg. Settlement of Boundary between Mysore and South Kanara. Notes on Revision Survey in the neighbourhood of Poona Dehra Dūn, 1923. Price Re. 4.
Vol. XIX-1901.20-The Magnetic Survey, by Lt.Colonel R. H. Thomas, d.s.o., r.e., and Fi.C.J. Buod, v.d.

Dehra Dūı 1925. Price R8. 4.
Vol. XX-1914-20—The War Record, Dehra IJūn 1925 Price Rs 3.
Val. XXI-1929-23-94-I. Air Survey in the Irratcadly Delta 1923-24, by Major C. (̀̇. Lowis, re., and
II. Reconnaissance Survey in Bhutan and South Tibet 1922, by Captaiu H. R. C. Meade, ia.

Dehr'a Ihūn 1025. Price Rs, 1.8.
(c) Geodetic Reports.

Vol. I-1929-25-Computations and Researches. Thalal work. Time and Magnetic observations. Latitude and Pendulum obserrations in Bihār, Assam and Kashmint. Levelling. Lecture on "The height of Mount Everest and other Peaks".

Dehra Dun 1928. Price Re. 6.

## part iv.-CATALOGUES AND INSTRUCTIONS

## Departmental Orders.

From 1878 to 1885 the Surveyor Gencral's orters were all issued as "Circular Orders". Since then they have been classilied as follows:-


## Departmental Orders.-(Continued).

In 1904 the various orders issued since 1878 were reclassified as follows:-

Number to date.
829
1.-Government of India Orders.-
2.-Circular Orders (Administrative).419
3.-Circalar Orders (Professional).-

196
4.-Departmental Orders. (appointments, promotions, transfers, etc.)

These are numbered serially and had reached the above numbers by December 1927. Government of India Orders and Circular Orders (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders have been issued since 1910 in the form of "Circular Memos". These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows:-

1. *Government of India Orders (Departmental) 1878-1903.Calcutta, 1904. Ditto ditto 1904-1908.-Calcutta, 1909. (Out of print). Ditto ditto 1909-1913.-Calcutta, 1915. Ditto ditto 1914-1918.-Calcutta, 1920.
2. *Circular Orders (Administrative) 1878-1903.-Calcutta, 1904. Ditto ditto 1904-1908.-Calcutta, 1909. Ditto ditto 1909-1913.-Calcutta, 1915. Ditto ditto 1914-1918.-Calcutta, 1920. Ditto ditto 1919-1924.-Dehra Dūn, 1926.
3.     * Regulations on the subject of Language Examinations for Officers of the Survey of India. Calcutta, 1914.
4.     * Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders.)-Calcutta, 1914.
5. Specimens of papers set at Examinations for the Provincial Service.-Dehra Dūn, 1927.

Price Re. 1.

## Catalogues and Lists.

1. Catalogue of Maps published by the Survey of India. Corrected to 1st July 1924, Calcutta, 1924.

Price Re. 1.
Lists of new maps published during each month appear in the monthly NO'LES OF THE SURVEX Oli INDIA. These monthly lists are also issued separately.
2. Catalogue of Maps of the Bombay Presidency, Calcutta, 19 i 3 . price As. 4.
3. Catalogue of Maps of Burma.

Calcutt: 1925. Price As. 8 ,
4. List of the publications of the Survey of India (published annailly) Dehr:a Dūn. Gratis.
5. Prico List of Mathematical Instrument Office. Calcutla, 1921. Gratis.
6. Catalogue of Books in the headquarters Library, Calcutta, 1901. (Out of print).

## Catalogues and Lists-(Continued).

7. Catalogue of Scientific Books and Subjects in the Library of the 'Trigonometrical Surveg Office. Dehra Dūn, 1908.

Price Re. I.
8. Classified Catalogue of the Trigonometrical Survey Library. Dehra Dūn, 1921.

Gratis.
9. Green Lists_Part I-List of officers in the Survey of Iudia (annually to date 1st January), Calcutta. Price As. 12.
Part II-History of Services of Officers in the Survey of India (annually to date lst July), Calcutta. Price Rs. 1:12.
10. Blue Lists-Ministerial and Lower Subordinate Establishments of the Survey of India.

Part I-Headquarters and Dehra Dūn offices (pub. lished amually to date 1st April), Calcuta.

Price R8. 3-8.
Part II-Circles and parties (published annually to date lst January), Calcutta. Price Rs. 4.4.

## Tables And Star Charts.

1. Aoxiliary Tables-to facilitate the calculations of the Survery of India. Fourth Edition, Dehra Dūn, 1906. (Out of print).
2. Anxiliary Tables-of the Survey of India. Fifth Edition, (revised and extended), by J. de (traatt Hunter, m, a., Sc.d., f. ins'r. p. In parts-

$$
\begin{aligned}
& \text { Part I-Graticules of Maps, } \text { (reprinted). Dehrn } \\
& \text { Dūn, } 1926 . \text { Price Re. } 1 . \\
& \text { Part II-Mathematical Tables, (reprinted with addi. } \\
& \text { tions). Dehra Dūn, } 1924 . \text { Price Rs, } 2 . \\
& \text { Part I I I-Topographical Survey Tables, (reprinted } \\
& \text { with additions). Dehra Dūn, } 1923 \text {. Price Rs. } 1-8 .
\end{aligned}
$$

3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dūn, 1918.
4.     * Metric Weights and Measures and other tables. Photo-Litho Office. ('ilcutta, 1889. (Out of print.)
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dūn, 1886. (1)ut of print).
6. Logarithmic Sines, Cosines, Timents and Cutangents to 5 places of decimals. Dehra Dūn. 1915. (Ont of print)
7. Common Logarithms to 5 places of decimals, 1855. (Out of print).
8. Table for determining Heiglits in Travering. Dehra Dün, 1898.
9. Tables of distances in Chains and Links corresponding to a sull. tense of 20 feet. Dehra Dūn, 1889. Price As. 4 .

[^26]
## Tables and Star Charts.-(Continued).

13. Star Charts for latitude $20^{\circ}$ N., by Colonel J.R. Hobday, r.s.c. Calcutta, 1904.

Price Rs. 1-8.
14. Star Charts for latitude $30^{\circ}$ N., by Ltt.-Colonel S. G. Burrard, r.e., f.r.s. Dehra Dūn, 1906.

Price Rs. 1-8.
15. Catalogue of 249 Stars for epoch 1st Jan. 1892, from observations by the Survey, Jehri Dũn, 1893.

Price R8. 2.
16. *Rinfall, miximum and minimum temperatures, from 1868 to 1926, recorded at the Survey Office Observatory, Dehra Dūn. (in the press).

## Old Manuals.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Survegs in Bengal, and the North-Western Provinces. Compiled by Captains R. Smyth, and H.L. Thuillier. Calcutta 1851. (Out of print.)
2. Ditto Second Edition. London, 1855. (Out of print).
3. A Manual of Surveying for India, detailing the mode of operations on the 'Prigonometrical, 'Topographical and Revenue Surveys of India. Compiled by Colonel H. L. Thuillier, c.s.i., f.r.s., and Lt.-Colonel R. Smyth. Third Edition, revised and enlarged. Calcutta, 1875. (Out of print.)
4. Hand-Book, Revenue Branch. Calcutta, 1893. Price Rs. 2-8.

## Survey of India Hand-Books.

1. Hand-Book of General Instructions, (in 2 vols.) Fifth Edition. 1927.
2. Hand-Book, Trigonometricai Branch, Second Edition. Calcutta 1902. (Out of print).
3. Hand Book of Trigonometrical Instructions.-Third Edition. Parts in pamphlet forms-

Part V-The Tides. Third Edition, revised, Dehra Dūn 1926.
Price Rs. 2.
Part VI-Levelling. Third Editiou, revised, 1927.
(in the press).
4. Hand-Book Topographical Branch,-Third Edition. Calcutta, 1905. (Out of print.)
5. Hand•Book of Topography.-Fourth Edition. Calcutia, 1911. Chapters, in pamphlet forms-

Chapter I-Introductory.-reprinted with additions, 1921.
Price As. 8
, $\quad$ II—Constitution and Organization of a Sursey Party.
-reprinted with additions, 1023. Price As $S$
III-Triangutation and its Computation.-rerised 1923.
Price Re. 1.
IV-Theodolite Traversing-Third Elition 1927.
Frice Re. 1 .
V-Plane tabling.-Thid bdition 1026. Price he 1.

[^27]
## Survey of India Hand-Books.-(Continued).

Chapter VI-Fair Mapping.-reprinted with additions and re. vised 1922.

Price Re. 1.
" VII-Trans-frontier Reconnaissance. Third Edition, 1924. Price As, 8 . VIII—Surveys in time of war, $1926 \quad$ Price As. 8.
," IX-Forest Survoys and Maps.-revised, 1925. Price As. 8.
" X—Map Reproduction. Second Edition, 1919.
Price As. 8.
," XI-Geographical maps. Second Edition, 1926. Price As. 8.
6. *Photo-Litho Office, Notes on Organization, Methods and Processes, by Major W. C. Helley, ree. 'Ihird Edition Calcutta, 1924.
7. The Reproduction (for the guidance of other Departments), of Maps, Plans, Photographs, Diagrams, and Line Illustrations. Calcutta, 1914

Price Rs. 3.
8. Survey of India Copy Book of Lettering. Calcutta.

Price Rs, 3.s.

## Notes and Instructions.

## Drawing and paper.

1. *Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper, by Major W. M. Coldstream, r.E. Calcutta, 1911.
(Out of print).

## Printing and Field Litho processes.

2. Report on Rubber Offset Printing for Maps, by Major W. M. Coldstream, r.e. Calcutta, 1911.
3. "Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for a small section. Compiled in the Photo and Litho Office, Survey of India. Calcuttn, 1913.
(Out of print).
4. *Report on the Working of the Light Field Litho Press (experimental) in November, and December 1910, with Appendices, by Lieut. A.A. Chase, r.e. Calcutta, 1911.
(i) Notes on some of the Methods of Reproduction suitable for the Field.
(ii) Suggested Equipment Tables for the Light Field Litho Press, (experimental.)
5. *Report on a trial of the equipment of the 1 st (Prince of Wales' Own) Sappers and Miners, for reproducing maps in the field, by Lieut. A. A. Chase, r.e. Calcutta, 1912 (Uut of print).

## Base Lines and Magnetic.

6. *Notes on use of the Jäderin Base line Apparatus. Dehra Dün. 1904. (Out of print).
7. *Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Âpparatus. Dehra Dūn, 1912.
8. Fustructions for taking Magnetic Observations, by J. Eccles, M. A. Dehra Dūn. 1896. (Out of print).

## Notes and Instructions-(Continued).

9. Rectangular Coordinates.-On a Simplification of the Computations relating to, by J. Eccles, m. A. Dehra Dūn, $1911 . \quad$ Price Re. 1.
10. *For Explorers.-Notes on the use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights, by J. de Graaff Hunter, m. A. Dehra Dūn, 1911. (Out of print).
11. *Amended Instructions for the Survey and Mapping of Town Guide Maps. August 1919

12 *Notes on boundary ribands on maps of the Survey of India, by Major F. Fraser Hunter, d.s.o., i.s. Calcutta, 1922.

13 * Notes on the map of Arabia and the Persian Gulf, with a general index of place names on the map, 1905-08, by Captain F, Fraser Hunter, r.A. Calcutta, 1910 .

## PART V.-MISCELLANEOUS PAPERS

## Unclassified Papers.

## Qeography.

1. A Sketch of the Geography and Geology of the Himālaya Moun. tains nnd 'Tibet (in four parts), by Colonel S.G. Burrard, r.e., f.r.s., Supdt., Trigonometrical Surveys. and H.H. Hayden, n.a., f.a.s., Supdt., Geological Survey of India. Calcutta, 1907-08.

Part I.-The High Peaks of Asia.
$\left.\begin{array}{c}\text { II.—The Principal Mountain Ranges of Asia. } \\ \text { " III.—The Rivers of the Himālaya and Tibet. }\end{array}\right\} \begin{gathered}\text { Price Rs. } 2 . \\ \text { per part }\end{gathered}$
" III.-The Rivers of the Himălaya and Tibot.
, IV.-The Geology of the Himālaya.
2 *Report on the Identification and Nomenclature of the Himālayan Peaks as seen from Kātmāndu, Nepāl, by Captain H. Wood, ree. Calcutta, 1904.
3. Routes in the Western-Himālaya, Kashmir, etc., by Lt. Colonel T. G. Moutgomerie, r.e., f.r.s., f.r.g.s. Dehra Dūn, 1909. (Out of print).
4. Routes in the Western-Himālaya, Kashmir, etc. with which are included Montgomerie's Routes. Volume I. Pūnch, Kashmir and Ladākh, by Major Mason, m.c., r.e., First Edition, Dehra Dūn, 1923. Price Rs. 6. Exploration.

1. *Account of the Survey Operations in connection with the Mission to Yārkand and Kashgar in 1873-74, by Captain Henry Trotter, r.e. Calcutta, 1875. (Out of print).
2. Report on the Trans-Himālayan Explorations during 1869. (Out of print).
3. Report on the Trans-Himālayan Explorations during 1870. Dehra Dùn, 1871. (Out of print).
4. Report on the Trans-Himalayan Explorations during 1878. Calcutta, 1880. (Out of print).
Special Reports.
5. *Report on the Mussoorie and Landour, Kumaun aud Garheaal, Ränikhet and Kosi Valley Surveys, extended to Peshāwar and Käghān Triangulation during 1899-70, by Major 'T.G. Montgomerie, r.e. (Out of print).
6. Report on the Recent Determination of the Longitude of Madras, by Captain S. G. Burrard, r.e. Calcutta, 1897. (Out of print).
[^28]
## Unclassified Papers.-(Conlinued).

3. *Report on the Observations of the Total Solar Eclipse of 6th April, 1875 at Camorta Nicobar Islands, by Colonel J. Waterhouse. Calcutta, 1875. (Out of print).
4. *The Total Solar Eclipse, 22nd January, 1898. Dehra Dūu, 1898.
(1) Report on the observations at Dumraon.
(2) Report on the observations at Pulgaon.
(3) Report on the observations at Sahdol.
5. *Report on Local Attraction in India, 1893-94, by Captain S.G. Burrard, r.e. Calcutta, 1895. (Out of print).
6. *Report on the Trigonometrical Results of the Earthquake in Assam, by Captain S.G. Burrard. Calcutta, 1898. (Out of print).
7. *Notes on the 'lopographical Survey of the $1 / 50,000$ Sheets of Algeria by the Topographical Section of the "Service Geographique de l'Armēe', by Captain W.M. Coldstream, r.e. Calcutta, 1906.
8. "The Simla Estates Boundary Survey on the scale of 50 feet to 1 inch, by Captain E.A. Tandy, r.e. Calcutta, 1906.
9. ${ }^{*}$ A note on the stage reached by the Geodetic Operations of the Survey of India in 1920, by Lt. Colonel H.McC. Cowie. n.e. The Magnetic Survey of India, by Major R. H. Thomas, d.s.o., R.E. and a note on the present levelling policy, by Major K. Mason, m.c., r.e. Dehra Dūu, 1922. (Out of Print).

## Geodesy.

1. Notes on the Theory of Errors of Observation, by J. Eccles, M.A. Dehra Dūn, 1903. Price ds, 8 .
2. *Note on a Change of the Axes of the Terrestrial Spheroid in relation to the 'Triangulation of the G.'I'. Survey of India, by J. de Graaff Hunter, m.a. Dehra Dūn. (Out of print), now incorporated in Professional Paper No. 16.
3. Report on the Treatment, and use of Invar in measuring Qeodetic Bases, by Captain H.H. Turner, r.e. London, 1907.

Price As. 8 .

## Projections.

1. On the projection used for the General Maps of India. Dehra Dūu, 1903. (Out of print).
2. *On the deformation resulting from the method of constructing the International Atlas of the World on the scale of onc to one million, by Ch. Lallemand. Translated by J. Eccles, m.a., together with tables for the projection of $1 / M$ Maps on the International system. Dehra Dun, 1912. (Out of print).

## Mapping.

1. *A Note on the different methods by which hills can be represellted upon maps, by Colonel S. $G$. Burrard, c.si., r.e., F.r.s., Surregor General of India. Simla, I912.
2. *A Note on the representation of hills, by Major C. L. Robertson, с.м.б., н.е. Dehra Dūn, 1912.
3. *A Note on the representation of hills on the Maps of India, ly? Mnjor F. W. Pirrie, i.A. Dehra Dūn, 1912.

## Unclassified Papers.-(Continued).

4. *A consideration of the Contour intervals, and Colour Scales, best suited to Indian 1/M maps, by Captain M.O'C. I'andy, n. E. Calcutta, 1913. (Out of print).

## Professional Papers.

No. 1-Projection-On the Projection for a Map of India, and adjacent Countries, on the scale of $1: 1,000,000$, by Colonel St. G. C. Gore, r.e. Second Edition. Dehra Dūn, 1903.

Price Re. 1.
No. 2 *Base Lines-Method of measuring Geodetic Bases by means of Metallic Wires, by M. Jäderin. (Translated from Memoires Prēsentēs par Divers. Savants à l'Acadēmie des Sciences de l' Institute de France). Dehra Dūn, 1899. (Out of print).

No. 3-Base Lines-Method of measuring Geodetic Bases by means of Colby's Compensated Bars, compiled by Lieut. H. McC. Cowie, r. e. Dehra 1)ūn, 1900. (Out of print).

No. 4-Spirit levels-Notes on the Calibration of Levels, by Lieut, E. A. T'audy, r. e. Dehra Dūn, 1900. (Out of print).

No. 5-Geodesy-'I'he A ttraction of the Himālaya Mountains upon the Plumb-Line in India, considerations of recent data, by Major S. G. Burrard, r.e. Second Edition, Dehra Dūn, $1901 . \quad$ Price Rs. 2.

No. 6-Base Lines-Account of a Determination of the Coefficients of lixpansion of the Wires of the Jäderin Base Line Apparatus, by Captain G. P. Lenox-Conyugham, r.e. Dehra Dūn, 1902. (Out of print).

No. 7-*Miscellaneous. Calcutta, 1903.
(1) On the values of Longitude employed in maps of the Survey of India.
(2) Levelling across the Ganges at Dāmuidia.
(3) Experiment to test the increase in the length of a levelling staff due to moisture and temperature.
(4) Description of a Sun-dial designed for use with tide gauges.
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the Freuch).
(6) Theory of electric projectors. (Translated from the French).

No. 8-Magnetic-Experiments made to determine the temperature coefficients of Watson's Magnetographs, by Captain H. A. Denholm, Fraser r. e. Calcutta, 1905.

Price Re. 1.
No. 9-Geodesy-An Account of the Scientific work of the Survey of India, and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Suriey Committee assembled in 1905, by Lt.-Colonel S. G. Burrard, r. e., r. R.s. Calcutta, 1905. Price Re. 1.

No. 10-Pendulums-'Tho Pendulum Operations in India, 1903-1907, by Major G. P. Lenox-Conyngham, r, e. Dehra Dūn, 1908. Price Rs. 2-8.

No. 11-Refraction-Observations of A tmospheric Refraction, 1905-09, hy H. (G. Shaw, Survey of India. Dehra Dün, 1911. (Uut of print).

No. 12-Geodesy-On the Oripin of the Himalara Mountains, by Colonel S. G. Burrard, c.s.j., r. E., f. R.s. Calcutta, 1912. Price Re, 1.

N C .13 -Isostasy-Investigation of the Theory of Isostasy in India, by Major 1I. L. Crosthwait, r. e. Dehra Dūn, 1912. (Out of print).

[^29]
## Professional Papers.-(Continued).

No. 14-Refraction-Formulæ for Atmospheric Refraction, and their application to Terrestrial Refraction and Geodesy, by J. de Granf Hunter, m.a. Dehra Dūn, 1913.

Price $R_{8,} 2$.
No. 15-Pendulums-The Pendulum Operations in India and Burme, 1908-13, by Captain H.J. Couchman, n.e. Dehra Dūn, 1915. Price Rs. 2.8.

No. 16-Geodesy-The Earth's Axes and Triangulation, by J. de Graff Hunter, m.a. Dehra Dūo, 1918.

Price Rs. 4.
No. 17-Isostasy-Investigations of Isostasy in Himālayan and neighbouring regions by Colonel Sir S.G. Burrard, r.c.s.I., r.e., F.R.s. Dehra Dūn, 1918. (Out of print).

No. 18-Isostasy-A criticism of Mr. R. D. Oldham's memoir "'the structure of the Himālayns and of the Gangetic Plain", by Lt.-Colonel H. McC. Cowie, r.e. Dehra Dūn, $1921 . \quad$ Price Rs. 1.8.

No. 19-Aerial Photography-Experiments in Aeroplane Photo Surveying, by Major C.G. Lewis, R.E., and Captain H.G. Salmond, (Late n.a.f.). Dehra Dūn, 1920.

Price Rs. 1.8.
No. 20-Reconnaissance Survey from Aircraft, by Lt.-Colonel G.A. Beazeley, d.s.o., R.E. Dehra Dū̃, $1927 . \quad$ Price Rs. 1.8.

No. 21-Irrigntion and Settlement Surveys 1926, by Major J. D. Campbell, d.s.o., R.e. Dehra Dūn $1927 . \quad$ Price Rs. 1.8.

## Departmental Papers Series.*

No. 1-Type-A consideration of the most suitable forms of type for use on maps, by Captain M. O'C. Tandy, r.e. Dehra Dün, 1913.

No. 2-Symbols-A review of the Boundary Symbols used on the maps of various countries, by Captain M.O'C. Tandy, r.e. Dehra Dūn, 1913.

No. 3-Maps-Extract from "The New Map of Italy, Scale 1: 100,000 ", by Luigi Giannitrapani. Translated from the Italian by Major W.M. Coldstream, r.e. Dehra Dūn, 1913.

No. 4-Town Surveys-A report on the practice of Town Surveys in the United Kingdom and its application to India, by Major C.L. Robertson, c.m.g., r.e. Dehra Dūn, 1913.

No. 5-Stereo-plotter-The Thompson Stereo-plotter and its use, with notes on the field work, by Lieut. K. Mason, r.e. Dehra Dūu, 1913.

No.6-Lerelling-Levelling of High Precision, by Ch. Lallemand. Translated from the French by J. de Graaff Hunter, m.a. Dehra Dün, 1914.

No. 7-Standard Bars-Bar Comparisons of 1907-08, by Major H.McC. Cowie, r.e. Dehra Dūn, 1915.

No. 8-Helio-zincography-Report on Rubber Off-set Flat bed Machine Printing, by Captain S. W. Sackville Hamilton, r.... Calcutta, 1915.

No. 9-Stereo-Anto-Plotting - A translation of Panl Corbin's Freach Stéréo Autogrammétrie, by Lt.-Colonel H.McC. Cowie, r.E. Dehra Dūn, $19: 2$.

## Professional Forms.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dūn.

[^30]
## Extra-Departmental Publications.

1. *Iudia's Contribution to Geodesy, by General J. T. Walker, r.e., c.b., f.e.s., LL.d. (Philosophical Transactions, Royal Society, Series A, Volume 186, 1895).
2. *On the Intensity and Direction of the Force of Gravity in India, by Lt.-Colonel S. G. Burrard, r.e, f.r.s. (Philosophical 'lrausactions, Royal Society, Series A, Volume 205, pages 289-318, 1905).
3. *On the effect of the Gangetic Alluvium on the Plumb-line in Northern lndia, by lR. D. Oldhan, f.r.s. (Proceedings of the Royal Society, Series A, Volume 90, pages $32-40$, 1914).
4. *On the origin of the Indo-Gangetic trough, commonly called the Himālayan Foredeep, by Colonel Sir S. G. Burrard, к.c.s.I, e.e., f.r.s. (Proceedings of the Royal Society, Series A, Volume 91, pages 220-238, 1915).
5. tThree comprehensive articles on "Comparators for the Indian Government" fron a report by Mijor H. McC. Cowie, il.e. (Engineering, Aug. 20, Aug. 27, Sept. 3, 1915).
c. $\ddagger$ Identification of Peaks in the Himālaya with notes, by Colonel Sir S.G. Burrard, к.c.s.i., i.e., f.n.s. (Geographical Journal, September 1918).
6. $\ddagger$ Geolorical interpretations of Qeodetic Results, by Colonel Sir S. G. Burrard k.c.s.i., r.e., fu.s. (Geographical Journal, October 1918).
7. $\ddagger$ War Surveys in Mesopotamia, by Colonel F. W. Pirrie, c m.G., 1.A. (Geographical Journal, December 1918).
8. $\ddagger$ Air Photography in Archaeology, by Lt.-Colonel G. A. Beazeley, d.s.o., n.e. (Geographical Journal, May 1919).
9. $\ddagger$ Mapping from Air Photographs, by Lt.-Colonel M. N. MacLend, r.e. (Geographical Journal, June 1919).
10. †Reminiscences of the Map of Arabia and Persian Gulf, by Lt.Colonel F.F. Hunter, d.s.o., I.A. (Geographical Journal, December 1919).
11. $\ddagger$ Central Kurdistan, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1919).
l: $\ddagger$ Surveys in Mesopotamia during the War, by Lt-Colonel G. A. Beazeler, d.s.o., r.e. (Geographical Journal, February 1920).
12. §A lecture on the Earth's Axes and Figure, by J. de Graaff Hunter, m.a. (The Observatory, May 1920).
13. $\ddagger$ A brief review of the evidence upou which the theory of Isostasy has been based, hy Colonel Sir S. G Burrard, к.c.s t., н.e., f.r.s. (Geographical Journal, July 1920).
l6. +A note on the topograplyy of the Nunkun Massif in Ladäkh, by Major K. Mason, m.c., rei. (Geographical Journal, Ausust 1920)
14. $\ddagger$ Notes on the Canal System aud Ancient Sites of Babylonia in the time of Xenophon, by Major K'. Mason, m.c. r.e. (Genrraphical Journal, December 19:20).

Messers. Harrison \& Sous, St. Martin's Lanc, Lundon, or the Royal Society ut Burlington Hoase, luandon.

+ Obtainable from Chaties liobery Johnson at the oflices of "fingineering", 85 and 36, Bedford Street Strand, Loudon, W. ©.

I Obtunable from the Ruyn (icographical Societr, Kensington Gure, London,
S.W. 7.
§ Obtainable from Messrs. Taylor \& Francis, Red Lion Cearl. Flect street, London, W. C.

## Extra. Departmental Publications-(Continued).

18. *Topographical Air Survey (with plates and maps), by Lt.-Colonel G. A. Beazeley, d.s.o., R.e. (Ruyal Engineers Journal, February 1921 .
19. *Projection of Maps.-A review of some Investigations in the theory of Map Projection, by A. E. Young, and Colonel Sir S. G. Burrard, k.c.s.i., re., f.r.s. ( Royal Engineers Journal, March 1921).
20. †l'he C'irculation of the Earth's Crust, by Lt.-Colonel E. A. Tandy, re. (Geographical Journal, May 1921).
21. $\ddagger$ Johnson's Suppressed Ascent on E 61., by Major K. Mason, m.c., r.e. (Alpine Journal, Novemiber 1921).
22. Stereographic Survey. The Autocartograph, by Lt.-Colonel M.N. MacLeod, d.s.o., r.e. (Geographical Journal, April 1922).
23. *The "Canadian" phototopouraphical method of Survey, by Captain and Bt. Major E. O. Wheeler, m.c., r.e. (Ruyal Engineers Journal, A pril 1922).

24 . $\ddagger$ The Survey of Mr. W. H. Johnson in the K'un Lun in 1865, by Major K. Mason, m.c., ree. (Alpine Journal, November 1922).
25. §Gravity Survey, by J. de Graaff Hunter, m.a., sc.d., f. ingt. p. (A Dictionary of Applied Physics, Vol. III).
26. §Trigonometrical Heights and Atmospheric Refraction, by J. do Graaff Hunter, m.a., sc.d., f. inst. p. (A Dictionary of Applied Physics, Vol III).
27. Geodesy, by Colonel Sir G. P. Lenox-Conyngham, Kt., r.E.. fr.s. and J. de Graaff Hunter, m.a., sc.d., f. inst. p. (Enc. Brit. 12th Edition, Vol. XXXI, 1922).
28. TThe proposed Determination of Primary Longitudes by International Cooperation, by Colonel Sir (7. P. Lenox-Conyngham, Kt., r.E., f.r.s. (Geographical Journal, February 1923).
29. + Kecent Developments of Air Photography.-(1) The adjustment of Air Photographs to Survey points, by Lt.-Colonel M. N. MacLeod, d.s.o, r.E (Geographical Journal, June 1923)
30. +Kishen Singh and the Indian Explorers, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1923).
31. || Electrical registration of height of water at any time in Tidal Prediction, by J. de Graaff Hunter, m.A.. sc.d., F. inst. P. (Journal of Scientific Instruments, Vol. I, No. 8, May 1924).
32. TGraphical methods of plotting from Air Photographe, by Lt.-Colonel L. N. F. I. King, o.b.e., n.e.
33. Geodesy, by J. de Granff Hunter, m.a., sc.d., f. inst. P. (Ent. Brit. 13th Edition, New Vol. ii 1926).

* Obtainable from The Institution of Royal Engineers, Chatham.
$\dagger$ Obtainable from the Royal Geographical Society, Kinsington Gore, London,
S.W. 7.
$\ddagger$ Obtainable from Alpine Clab, 23 Savile Row, Londrn. W. I.
Sobtainable from Messrs. Mac Millan \& Co. Limited., St. Martin's Street, London, W.C., Bombay. Calcatta, Madras, Melbourne.
|| Obtainable from the Institute of Pbysice, 90 Grent Rassel Street, Loddon,
W.C. I.

TI Obtainable from H.M. Stationary office, Adastral tinnse, Kingaway, London,
W.C. 2, 28, Abingdon street, London, S.W.

## Extra-Departmental Publications-(Continued).

34 *The Demarcation of the Turco-Persian Boundary in 1913-14, by Colonel C. H. D. Ryder, r.e. (Geographical Journal, September 1925).
35. †The De Filippi Expedition to the Eastern Kara-koram, by B. B. D. and Colonel Sir G. P. Lenox-Conyngham, Kt., r.e., F.R.s., m.s. (Nature, 13th February 1926).
36. *The Problem of the Shaksgam Valley, by Colonel Sir Francis Younghusband, к.c.s.I., к.c.I.e. (Geographical Journal, September 1926).
37. *The Shaksgam Valley and Aghil Range, by Mnjor K. Mason, m.c., r.e. (Geographical Journal, April 1927).
38. A Break-Circuit for Pendulum Clocks, by J. de Graaff Hunter, m.a.. sc.d., f. inst. p. (Bulletin Géodésique No. 14, April, May, June 1927, Paris).
39. *A Graphical Discussion of the Figure of the Earth, by A.R. Hinks, c.b.e., f.r.s. (Geographical Journal, June 1927).
40. *Vigure of the Earth : correspondence by J. de Graaff Hunter, m.A., sc.d., f. inst. p. (Geographical Journal, December 1927).
41. *Figure of the Earth : correspondence by Captain G. Bomford, B.E. (Geographical Journal, December 1927).
42. *Reply to Captain G. Bomford's letter on Figure of the Earth (No. 41 of list), by Captain G. Ti. McCaw and A.K. Hinks, c.b.e., f.r.s. (Geographical Journal, December 1927).
43. *The Stereographic Survey of the Shaksgam, by Major K. Mason, m.c., в.e. (Geographical Journal, October 1927).
44. A Report on the Geodetic work of the Survey of India for the period 1924-27, by J. de Graaff Hunter, m.A., sc.d., f. ingt. p., presented at the third meeting of the International Union of Geodesy and Geophysics, Prague, September 1927.
45. Figure of the Earth—Presidential address by J. de Graaff Hunter, m.d., sc.d., f. inst. p., at the Section of Mathematics and Physics of the Fifteenth Indian Science Congress, Calcutta 1928 (Published by the Asiatic Society of Bengal, Calcutta).

[^31]


[^0]:    * Exclading No. 2 D.O., Publication and Stores, F.M.O. and Cantonment Parts.
    * The leaignation of the Snperintendent Trigonometrical Snrvey was changer Director of Georletic Branch from 10th July 1924.

[^1]:    - Reproilaced in Departmental Paper No. 6, Survey of India, 1914.

[^2]:    $\ddagger$ Thi. is the quantity whish wonld appear as the closing error of the circtit if it were assumed that M.W.L's. (Mean Water Levels) at $\mathbf{A}$ and $\mathbf{B}$ were identical.

[^3]:    From consileration of the hydrodynamical equations of motion in a channel of small depth it was anticipated that in a river-
    (1) the lieights of high and low water would be predictable by ordinary marhine methods.

[^4]:    *This chart for Bumbley is rectoced to $\frac{1}{2}$ full size.

[^5]:    - Sueplied by Mr. A. Mnnru, 65 Preston Koad Winson Green, Birringham.

[^6]:    * Work was not done for 45 days on account of making wew dome of the Obervatory.

[^7]:    Note－Figares in thick tspe represent the maximum and minimam values during the month

[^8]:    * up to 10 hr. on lifth. $\ddagger$ Change from 29th Nov.
    + from 11 hr on lGth.

[^9]:    NOTL-Figures in thick type represent the maximum and minimam values during the month.

[^10]:    Note-Figares in thick type represent the maximam and minimam values during the month.

[^11]:    Note-Dip is greater or less than the mean as sign is + or - .

[^12]:    NoTE-Figores in thick type represent the maximan and minimom vaines during the month.

[^13]:    Notr-Horizontal Force is greater or less than the mean as sign is + or -

[^14]:    NOTE－Figures in thick type represent the maximam and minimum valuea during the month，

[^15]:    as possible by enquiry from the local anthorities, and correction to the latitude station applied accordingly. on ${ }^{\prime}$ The Church Steeple which marked this point fell in the earthquake of 1897 . Its site was located as closely as possible by obelisk, and with an intersected point abont 400 jards distant on a rock in the Brahmapatra river.

[^16]:    *The exact value is 0.50725085 seconds.
    $\dagger$ Mean of pendulums Nos. 138, 139 and 140 only, the value for Dehra Dūn for those three pendulams being 0.5072478 seconds.

[^17]:    * Without regard to signs.

[^18]:    * A positive value of ( $\mathbf{A}-\mathbf{G}$ ) denotes southerly deflections of the Plumb.jine.

[^19]:    These old benchmarks all show a slight subsidence, and it is noteworthy that all are inscribed on stone slabs let into existing masonry work, inmediately previons to cannection. Their published valnes are not being altered, as this line is being done by the precise systrm, and auy alterations nocessar'y will be made then.

[^20]:    * No. 2 section was,disbanded in Janaary.

[^21]:    * This includes 1 e 8 niles of lack ! crelling of line sukkur to Hyderiund of whid fore levelling was done the same season.

[^22]:    $\dagger$ Revised height by levelling of 1924-: 5 .

[^23]:    * New value and nomber given others are onaltered.

[^24]:    - New vaine and unmber given, others are analtered.
    $\dagger$ Valne from line 101 (Jacobābäd to Khānpar).

[^25]:    * Rastimation based on height of observer above grounci level and hour of day. No temperature realings available.
    $\dagger$ Interpolated valuc.
    $\ddagger$ Estimated.

[^26]:    * For Departmental use onls.

[^27]:    * For Departuental nse only.

[^28]:    * For Departmental use only.

[^29]:    * For Departmental use only.

[^30]:    - For Departmental use only.

[^31]:    * Obtainable from Royal Geographical Society, Kensington Gore, London, S.W. 7.
    $\dagger$ Obtainable from the office of Nature, St. Martin's Street, London, W.C. 2.

